

Projet Cézanne

Z.A. Les Sybilles à LES PENNES MIRABEAU

Rapport d'étude CAI2.O.260 - indice 1

Etude géotechnique de conception (G2)
Phase Avant-Projet
25/03/2025

Agence d'Aix-en-Provence • 1030 rue JRGG de la Lauzière, Les Milles, 13290 AIX EN PROVENCE Tél. 33 (0) 4 42 99 27 00 • Fax 33 (0) 4 42 99 27 35 • Email : cebtp.aix@groupeginger.com

APL
106 Avenue Marx Dormoy
92120 MONTROUGE

PROJET CEZANNE

Z.A. Les Sybilles 13170 LES PENNES MIRABEAU

RAPPORT - Etude géotechnique de conception (G2) - phase AVP

Dossier : CAI2.O.260			Réf. rapport	: CAI2.	2.O.260-1 Contrat : CAI2.O.0425 BDC n° 24-004518 du 19/12/2			
Indice	Date	Chargé d'affaire	Visa	Vérifié par		Visa	Contenu	Observations
1	25/03/25	H.GRZES	nger	S.PILORGE <		Han	187 pages dont 125 pages annexes	

A compter du paiement intégral de la mission, le client devient libre d'utiliser le rapport et de le diffuser à condition de respecter et de faire respecter les limites d'utilisation des résultats qui y figurent et notamment les conditions de validité et d'application du rapport.

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 2/187

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

Sommaire

l.	CON	TEXTES	6
1.1.	Cor	itexte du projet	7
	1.1.1.	Données générales	7
	I.1.2.	Documents communiqués	7
I.2.	Des	cription du site	8
	I.2.1.	Extrait de carte IGN	8
	I.2.2.	Image(s) aérienne(s)	8
	I.2.3.	Topographie	9
	I.2.4.	Description du site	9
I.3.	Des	cription du projet	14
	I.3.1.	Ouvrages projetés	
	I.3.2.	Sollicitations	
	I.3.3.	Voiries projetées	
1.4.		sion Ginger CEBTP	
I.5.		textes géologique, géotechnique, hydrogéologique et risques majeurs	
	I.5.1.	Contextes géologique et géotechnique prévisionnels	
	I.5.2.	Contexte hydrogéologique	
	I.5.3.	Risques majeurs naturels ou anthropiques	20
II.		STIGATIONS GEOTECHNIQUES	
II.1.		ambule	
II.2.		lantation et nivellement	
II.3.		dages et essais in situ - campagne 2024	
	II.3.1.	Investigations in situ	
	II.3.2.	Piézométrie	
II.4.		dages et essais in situ - campagne ALIOS 2023	
II.5.		ais en laboratoire	
	II.5.1.	Campagne 2024	
	II.5.2.	Campagne ALIOS 2023	29
III.	INTE	RPRETATIONS ET SYNTHESE DES INVESTIGATIONS -	MODELE
GEO	OTECH	INIQUE	30
III.1		thèse des investigations - Interprétations	
		Lithologie	
	III.1.2.	4	
	III.1.3.		
111.2	. Pié:	zométrie, niveaux d'eau	37

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

III.3.	Wod	ele geotechnique	38
IV. E	ETUD	E DES OUVRAGES	. 42
IV.1.	Zon	e d'Influence Géotechnique : ZIG	43
		tement des risques majeurs ou anthropiques	
		Argiles (retrait / gonflement)	
		Risque sismique	
		ptations du terrain au projet - Calage altimétrique	
		assements généraux - Fouilles	
		Traficabilité en phase chantier	
	V.4.2.	•	
ľ	V.4.3.	Drainage de la plateforme en phase chantier	46
Ŋ	V.4.4.		
Ŋ	V.4.1.	Talus	47
IV.5.	Fon	dations	49
Ŋ	V.5.1.	Justifications	49
ľ	V.5.2.	Fondations superficelles	49
ין	V.5.3.	Dispositions constructives	55
IV.6.	Nive	au bas	56
ľ	V.6.1.	Généralités	56
ľ	V.6.2.	Conception	56
IV.7.	Rec	ommandations concernant les murs enterrés	57
ין	V.7.1.	Drainage à l'arrière des murs	57
IV.8.	Prot	ection des ouvrages vis-à-vis de l'eau	57
IV.9.	Prot	ection des ouvrages vis-à-vis du risque sismique	59
IV.10	. Zon	es de voiries et réseaux divers (VRD)	60
		Référentiels	
Ŋ	V.10.2.	Partie Supérieure des Terrassements (PST) et classe d'arase	60
		Couche de forme	
V F	-NCH	AINEMENT DES ETUDES III TERIFURES	62

ANNEXES

ANNEXE 2 - PLAN D'IMPLANTATION DES SONDAGES

ANNEXE 3 - SONDAGES, ESSAIS IN-SITU ET LABORATOIRE ALIOS 2023

ANNEXE 4 – SONDAGES CAROTTES

ANNEXE 5 - SONDAGES DESTRUCTIFS - GINGER CEBTP

ANNEXE 6 - ESSAIS DE PENETRATION STATIQUE - GINGER CEBTP

ANNEXE 7 - ESSAIS DE PENETRATION DYNAMIQUE - GINGER CEBTP

ANNEXE 8 - PROCES VERBAUX DES ESSAIS EN LABORATOIRE

I. CONTEXTES

Dossier: CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025

Page 6/187

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

I.1. Contexte du projet

I.1.1. Données générales

I.1.1.1. Généralités

Nom de l'opération : Projet Cézanne Localisation : Z.A. Les Sybilles

Commune: LES PENNES MIRABEAU

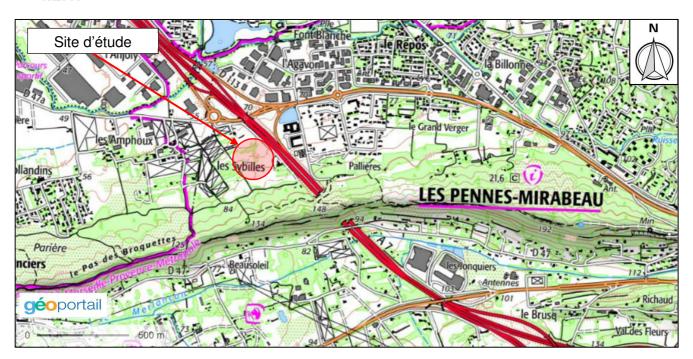
Code postal : 13170

Demandeur de la mission et client : APL

I.1.1.2. Phase du projet

D'après les éléments communiqués, le projet est au stade d'avancement suivant :

Etudes d'esquisse	Etudes d'avant- projet sommaire	Etudes d'avant- projet définitif	Etudes de projet	Etablissement DCE	Consultation ACT	Réalisation des ouvrages
		X				


I.1.2. Documents communiqués

Les documents utilisés dans le cadre de cette étude sont les suivants :

- Rapport d'étude géotechnique de conception G2AVP référencé ASE23042 édité par ALIOS Ingénierie des sols le 25/07/2023;
- Plan masse projet au 1/500ème, référencé APS15-GF_18 édité par RICHET Patrick, cabinet d'architecture D.P.L.G., le 29/08/2024 ;
- Plan masse existant (plan topographique) au 1/500, référencé plan masse geomètre_42 édité le 04/09/23. L'éditeur de ce plan ne nous a pas été communiqué ;
- Coupe projet édité par APL (sans référence).

I.2. Description du site

I.2.1. Extrait de carte IGN

Source : Géoportail

I.2.2. Image(s) aérienne(s)

Source : Géoportail

I.2.3. Topographie

Le site concerné par les investigations présente une pente orientée vers le Nord. Son altitude varie de +81.2 à +70.0 mètres NGF.

I.2.4. Description du site

Le site se situe au sein de la Zone d'Activités Commerciales (Z.A.C.) des Sybilles sur la commune des Pennes Mirabeau (13). Le site est bordé par l'Autoroute A7 à l'Est, par un bâtiment commercial de la société TESLA au Sud, et par la voirie de l'Allée de la Broquette, à l'Ouest et au Sud du site étudié.

Lors de notre intervention (Décembre 2024 à Février 2025), le terrain était en friche tel que :

- La partie Sud situé à l'amont, est une plateforme terrassée sur une profondeur inconnue avec quelques stocks de gravats de démolition (béton et enrobé) et divers matériaux (bois, graves et sables, etc. ...);
- La partie Est présente des zones visiblement plus humides (présence de roseaux/canne de provence);
- La partie Ouest et centrale est en grande partie occupée par de la végétation rase ;
- Il subsiste deux pistes orientées Nord-Sud et traversant le site étudié de part en part.

Source : Géoportail

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

1.2.4.1. Partie Sud du site étudié

Photo de la plateforme terrassée au Sud du site (GINGER CEBTP / 08/10/2024)

Photo de la plateforme terrassée au Sud du site (GINGER CEBTP / 08/10/2024)

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

Photo de la plateforme terrassée au Sud du site / Zoom sur les stocks (GINGER CEBTP / 08/10/2024)

Photo de la plateforme terrassée au Sud du site / Zoom sur les stocks (GINGER CEBTP / 08/10/2024)

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

1.2.4.2. Partie Est du site étudié

Photo de la partie Est du site (GINGER CEBTP / 08/10/2024)

Photo de la partie Est du site (GINGER CEBTP / 08/10/2024)

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

1.2.4.3. Partie centrale et partie Ouest

Photo de la partie centrale du site (GINGER CEBTP / 08/10/2024)

Photo de la partie Ouest du site (GINGER CEBTP / 08/10/2024)

I.3. Description du projet

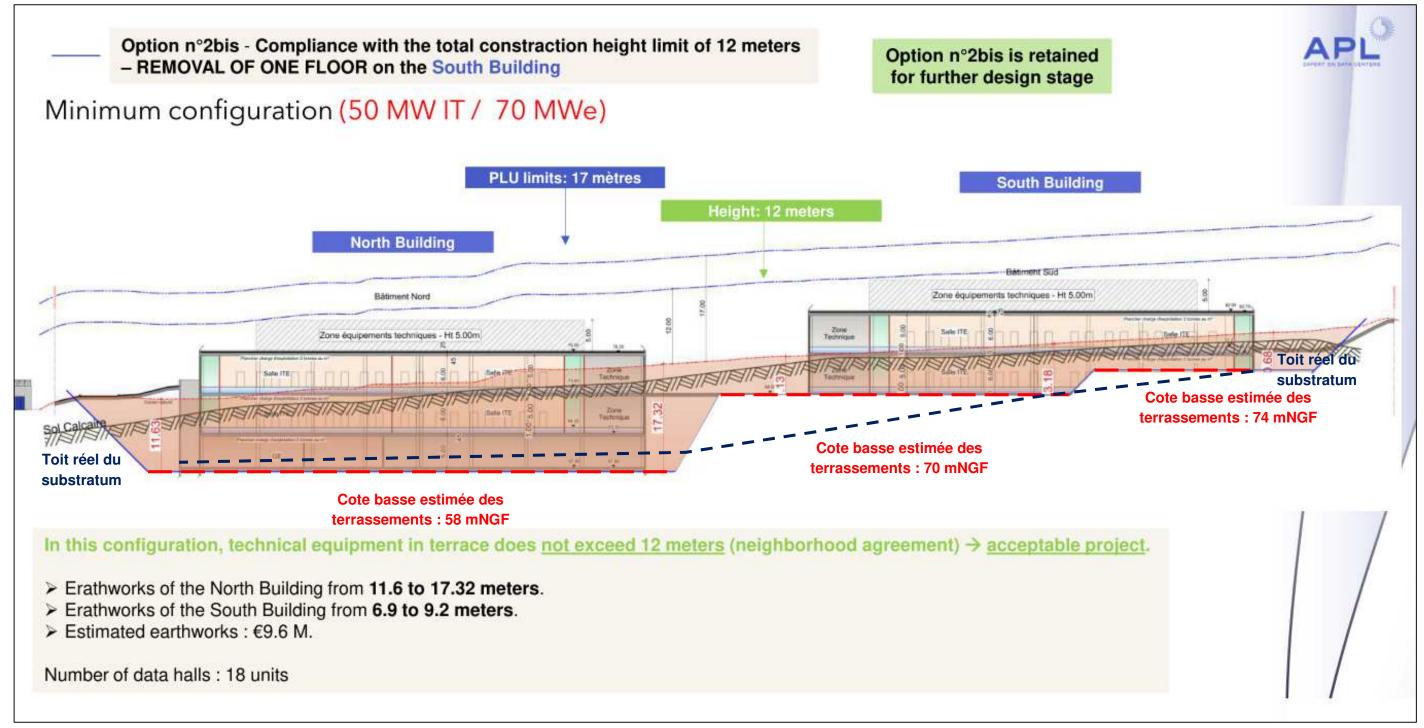
D'après les documents et les informations fournies par le client (société APL Data Center), le projet se présente comme suit :

- Deux bâtiment à usage commercial d'une superficie de 13 225 m² chacun, de type R0 avec 2 niveaux enterrés pour le bâtiment Nord et 1 niveau semi- enterré pour le bâtiment Sud;
- Un bâtiment à usage commercial d'une superficie de 1 419 m²;
- Une voirie en enrobé pour circulation des poids-lourds ;
- Deux cuves enterrées de 100 m³ chacune ;
- Quatre parkings de stationnement en enrobé pour véhicules légers :
 - 1 parking de 150 places de stationnement à l'Est;
 - 2 parking de 38 places de stationnement au Nord ;
 - 2 parking de 41 places de stationnement au Sud;
 - 1 parking de 48 places de stationnement à l'Ouest.

Pour l'insertion du projet, il est prévu de terrasser le site sur :

- 11.6 m à 17.3 m pour le bâtiment Nord à une cote base estimée à 58 mNGF;
- 6.9 m à 9.2 m pour le bâtiment Sud cote NGF estimée à 70 mNGF pour la plateforme intermédiaire et 74 mNGF pour la plateforme la plus au Sud.

Par ailleurs, il est prévu d'aménager des espaces verts en périphérie du projet.



Plan masse projet au 1/500ème, référencé APS15-GF_18 édité par RICHET Patrick, cabinet d'architecture D.P.L.G., le 29/08/2024

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025

Coupe projet édité par APL (sans référence)

I.3.1. Ouvrages projetés

Les ouvrages géotechniques et travaux nécessaires à la construction du projet sont les suivants :

- Préparation du terrain, terrassements (déblais et remblais), épuisement des fouilles,
- Pentes de talus.
- Fondations,
- Remblaiement périphérique,
- Niveaux bas et voiries.

Le présent rapport traite de leur étude au stade de l'avant-projet (mission G2 AVP).

I.3.2. Sollicitations

Les sollicitations appliquées aux fondations ne sont pas connues au stade actuel de l'étude. Il conviendra donc de s'assurer que les systèmes de fondations préconisés et les dispositions retenues sont compatibles avec les charges réellement apportées et les caractéristiques de l'ouvrage dans les missions ultérieures de conception.

I.3.3. Voiries projetées

Le projet comprend la réalisation de voiries pour véhicules légers et lourds ainsi que de plusieurs parkings pour véhicules légers.

L'étude du dimensionnement des chaussées ne fait pas partie de la mission qui nous a été confiée. Toutefois, les recommandations concernant le sol support sont abordées dans le présent rapport.

Les trafics envisagés ne nous ont pas été communiqués.

I.4. Mission Ginger CEBTP

La mission de Ginger CEBTP est conforme au contrat n°CAl2.O.0425 ayant fait l'objet du bon de commande n°24-004518 du 19/12/2024.

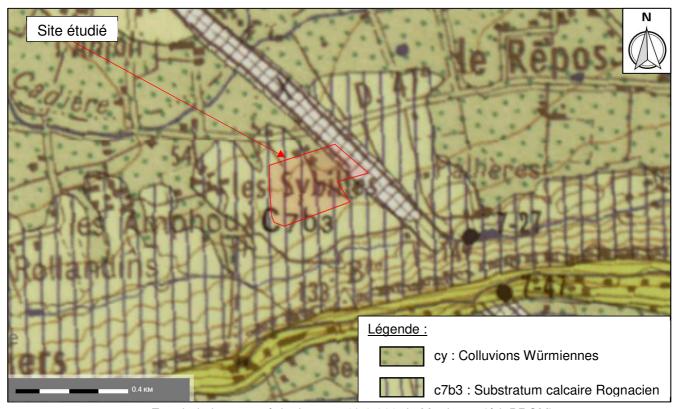
Il s'agit d'une Etude géotechnique de conception (G2) réalisée en phase Avant-Projet (AVP), selon la norme AFNOR NF P 94-500 de novembre 2013 sur les missions d'ingénierie géotechnique.

Les résultats de l'étude réalisée au stade de la phase Avant-Projet (G2 AVP) ne sont pas suffisants pour être utilisés dans le DCE (Dossier de Consultation des Entreprises) car les risques importants sont traités à la fin de la mission G2 intégrant les phases PRO, DCE et ACT. De ce fait, cette étude d'Avant-Projet devra être suivie des études G2-PRO et G2-DCE/ACT.

L'étude comprend, conformément au contrat et à la norme NF P 94-500 de Novembre 2013, les prestations suivantes :

- L'ébauche des contextes géotechnique, hydrogéologique et sismique :
 - Etablir une première approche d'un modèle géologique,
 - Etudier les différents risques naturels identifiés,
 - Fournir une première approche d'un modèle hydrogéologique (niveaux d'eaux et relevés piézométriques dans le temps),
 - Présenter une première ébauche du contexte sismique et qualifier le risque de liquéfaction sous séisme,
 - Faire une première estimation des caractéristiques géotechniques importantes et des hypothèses géotechniques à prendre en compte au stade de l'avant-projet,
 - Donner les principes de construction envisageables (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, dispositions générales vis-à-vis des nappes et avoisinants), ainsi qu'une ébauche dimensionnelle par type d'ouvrage géotechnique,
- Préciser la disposition vis à vis des avoisinants et des ouvrages situés dans la Zone d'Influence Géotechnique (ZIG):
 - Etudier la stabilité générale du site pour un profil type, avant et après insertion du projet,
 - Juger de la stabilité des ouvrages avoisinants et mitoyens avant et après travaux.

Il convient de rappeler également que les aspects suivants ne font pas partie de la mission :


- L'historique du site (étude de diagnostic environnemental du milieu souterrain en cours par GINGER BURGEAP);
- Les aménagements extérieurs (drainage, murs de clôtures, etc.);
- L'étude de la pollution (étude de diagnostic environnemental du milieu souterrain en cours par GINGER BURGEAP) ;
- L'étude de l'inondabilité du site ;
- Les anomalies géotechniques situées en dehors de l'emprise de la reconnaissance;
- Létude du dimensionnement des chaussée.

I.5. Contextes géologique, géotechnique, hydrogéologique et risques majeurs

I.5.1. Contextes géologique et géotechnique prévisionnels

D'après notre expérience locale et la carte géologique de MARTIGUES à l'échelle 1/50000, le site serait constitué des formations colluvionaires du Würm (Cy), constituées de limons soliflués, voir géliflués et d'éléments gélivés, sur le substratum calcaire Rognacien (c7b3), constitué de bancs calcaires lacustres avec minces intercalations marneuse ou ligniteuse. Localement, le substratum calcaire atteint une puissance dépassant les 50m.

Extrait de la carte géologique au 1/50 000 de Martigues (éd. BRGM)

I.5.2. Contexte hydrogéologique

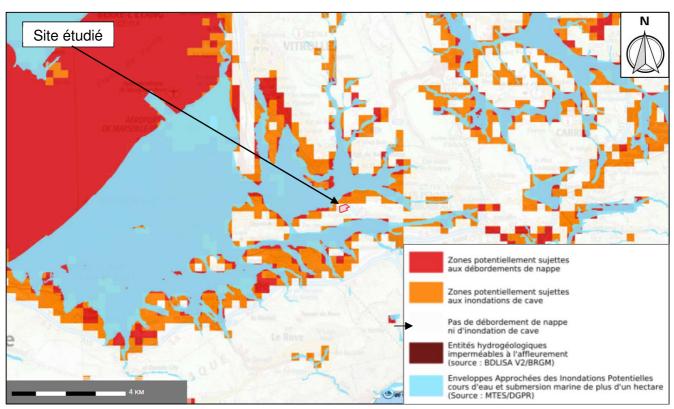
D'après notre expérience locale et la carte géologique à l'échelle 1/50000, les formations colluvionaires du Würm sont le siège de circulations d'eau ponctuelles et anarchiques. Des circulations au toit du substratum calcaire sont également à prévoir, ainsi qu'au sein des fractures et failles dans le calcaire.

Dans ce contexte de pente, le site est également soumis au ruissellement des eaux pluviales depuis l'amont (au Sud) vers l'aval (au Nord).

Par ailleurs, la commune n'est pas soumise à un Plan de Prévention vis-à-vis du Risque inondations.

Dossier: CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 19/187

I.5.3. Risques majeurs naturels ou anthropiques


Les informations recueillies sur les sites internet consultés (<u>www.georisques.gouv.fr</u> et site de la préfecture) sont consignées dans le tableau ci-dessous.

Risques majeurs	Informations documentaires			
Inondations/débordement de cours d'eau	Hors zone inondable identifiée (pas de PPRi en vigueur) Hors zone potentiellement sujette aux inondations *			
Cavités naturelles ou anthropiques carrières	Pas de présence de cavités connues à proximité du projet *			
Argiles (retrait/gonflement - carte 2020)	Niveau exposition fort *			
Mouvements de terrains Instabilité – Glissement – Chute de blocs	Pas de présence de mouvements de terrains connus à proximité du projet *			
Séismes	Zone 3 (modérée) *			

^{*} cf. détail et illustrations ci-après

1.5.3.1. Inondation /débordement de cours d'eau

D'après les données issues du BRGM (Bureau de Recherches Géologiques et Minières : www.inondationsnappes.fr ou http://cartorisque.prim.net), la parcelle ne présente pas de sensilité aux risques d'inondations par remontée de la nappe et aux débordements de rivière.

Extrait de la carte d'aléa d'inondation par remontée de nappe (BRGM)

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 20/187

Par ailleurs des informations précises sur le risque réel d'inondation peuvent être fournies dans les documents d'urbanisme (P.L.U.) et dépendent des travaux de protection réalisés, donc susceptibles de varier dans le temps. S'agissant de données d'aménagement hydraulique et non de données hydrogéologiques, elles ne font pas partie de notre mission d'étude géotechnique.

1.5.3.2. Cavités naturelles ou anthropiques - Carrières

D'après les informations données par le BRGM (Bureau de Recherches Géologiques et Minières), il n'est pas signalé la présence de cavités naturelles ou anthropiques dans un rayon de 500m autour du site étudié.

1.5.3.3. Argiles (retrait/gonflement - carte 2020)

A noter que, d'après les informations données par le BRGM (Bureau de Recherches Géologiques et Minières), le niveau d'exposition vis-à-vis du retrait / gonflement des terrains argileux au droit du projet est **Fort**.

Extrait de la carte d'exposition au retrait-gonflement des argiles (éd. BRGM)

1.5.3.4. Mouvements de terrains – Instabilité – Glissement – Chute de blocs

D'après les informations données par le BRGM (Bureau de Recherches Géologiques et Minières), il n'est pas signalé la présence de mouvements de terrain dans un rayon de 500m autour du site étudié.

Dossier: CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 21/187

1.5.3.5. **Séisme**

Le site étudié est classé en zone de sismicité 3 (modérée).

Dans le cas d'un ouvrage de catégorie d'importance 2 ou plus, l'application des règles parasismiques est obligatoire et il faut se reporter à l'Eurocode 8 (Norme NF EN 1998 – Calcul des structures pour leur résistance au séisme) le cas échéant.

Nous estimons à ce stade que l'ouvrage appartient à la catégorie sismique II, concernée par cette obligation (donnée à confirmer au plus tard en phase G2PRO par le Maître d'Ouvrage).

L'analyse du potentiel de liquéfaction des sols sous séismes est obligatoire en zone sismique 3.

II. INVESTIGATIONS GEOTECHNIQUES

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 23/187

II.1. Préambule

Une première campagne avait été réalisé par Alios Ingénierie dans le cadre d'une mission G2AVP précédente (Réf. ASE23042). La nouvelle campagne la complète, et la nomenclature des sondages a été conservée, et la suit.

La campagne d'investigations a été définie par Ginger CEBTP en accord avec le client.

Ces investigations ont toutes été réalisées.

II.2. Implantation et nivellement

L'implantation des sondages et essais in situ figure sur le plan d'implantation joint en annexe 2. Elle a été définie et réalisée par Ginger CEBTP en fonction du projet.

L'altitude des têtes de sondages correspond au niveau du terrain au moment des investigations, noté « TA » dans la suite de ce rapport.

Les têtes de sondages ont été repérées et nivelées par Ginger CEBTP à l'aide d'un GPS de précision (type TRIMBLE TDC100 – Antenne R4). Les coordonnées sont fournies en X, Y (Lambert 3 CC44) et l'altimétrie Z (NGF) sur les coupes de sondages en annexes.

II.3. Sondages et essais in situ - campagne 2024

II.3.1. Investigations in situ

Les investigations suivantes ont été réalisées entre Décembre 2024 et Février 2025 :

Type de sondage	Quantité	Nom	Prof. / TA	Altitude NGF	Critère d'Arrêt/Refus
Sondage destructif (tricône Ø66mm + eau)		SP11	22.3 m	73.77 m	Arrêt
avec enregistrement des paramètres en continu et prélèvement de cuttings	4	SP12	18.0 m	68.89 m	Arrêt
Continu et preievement de cuttings	4	SP11 22.3 m 73.77 m SP12 18.0 m 68.89 m SP13 18.5 m 70.58 m SP14 22.0 m 71.99 m SC1 20.0 m 72.87 m SPD33 7.0 m 73.00 m SPD34 7.0 m 72.97 m SPD35 6.6 m 74.24 m SPD36 2.4 m 75.27 m	Arrêt		
		SP14	22.0 m	71.99 m	Arrêt
Exécution d'essais pressiométriques. Norme NF EN ISO 22476-4	44				
Sondage carotté (poinçonnement Ø114mm)	1	SC1	20.0 m	72.87 m	Arrêt
		SPD33	7.0 m	73.00 m	Arrêt
Facility (n/thous) the demonstrate to B		SPD34	7.0 m	72.97 m	Arrêt
Essai au pénétromètre dynamique type B Norme NF EN ISO 22476-2	5	SPD35	6.6 m	74.24 m	Refus
NOTHE IN LIN 100 22470-2		SPD36	2.4 m	75.27 m	Refus
		SPD37	4.2 m	75.96 m	Refus

Type de sondage	Quantité	Nom	Prof. / TA	Altitude NGF	Critère d'Arrêt/Refus
		CPT1	0.6 m	74.29 m	Refus
Essai au pénétromètre statique lourd de		CPT1BIS	3.5 m	74.29 m	Refus
type PAGANI 200 kN Norme NF EN ISO 22476-12	5	CPT2	5.6 m	77.53 m	Refus
		CPT3	1.3 m	76.86 m	Refus
		CPT3BIS	0.8 m	76.86 m	Refus
		CPT4	1.5 m	78.91 m	Refus
		CPT4BIS	1.6 m	78.91 m	Refus
Essai au pénétromètre statique lourd de type PAGANI 200 kN	44	CPT5	1.0 m	76.34 m	Refus
Norme NF EN ISO 22476-12	11	CPT5BIS	1.2 m	76.34 m	Refus
		CPT6	0.02 m	74.12 m	Refus
		CPT6BIS	0.01 m	74.12 m	Refus

Les coupes des sondages et les pénétrogrammes sont présentés en **annexes 4, 5, 6 et 7**, où l'on trouvera en particulier les renseignements décrits ci-après :

Sondages destructifs (sondages notés SP) :

- Coupe approximative des sols (l'interprétation des sols à partir des forages de type destructif est faite uniquement d'après l'examen des cuttings, des courbes de pénétration des sols et des diagraphies)
- Diagraphie des paramètres de forage enregistrés :
 - V.A.: vitesse d'avancement instantanée (m/h),
 - P.O.: pression sur l'outil (bars),
 - P.I.: pression d'injection (bars),
 - C.R.: couple de rotation (bars).
- Essais pressiométriques :
 - Module pressiométrique : E_M (MPa),
 - Pression limite nette: p_i* (MPa),
 - Pression de fluage nette p_f* (MPa),
 - Rapport E_M/p_I*.

Sondages carottés (sondages notés SC) :

- Coupe détaillée des sols,
- Pourcentage de carottage et RQD,
- Indication de carottes intactes de sols mis dans des caisses en bois,
- Indication d'échantillons intacts sous gaine PVC translucide,
- Photographies des échantillons,
- Equipement piézométrique.

Essais au pénétromètre dynamique Lourd de type B (essais notés SPD) :

 Diagramme donnant la résistance dynamique en pointe qd en fonction de la profondeur et calculée selon la formule des Hollandais.

Essais au pénétromètre statique PAGANI 200 kN (essais notés CPT):

- Diagramme donnant la résistance statique qc en fonction de la profondeur,
- Diagramme donnant le frottement latéral sur le manchon fs en MPa,
- Diagramme donnant le rapport Rf de frottement fs/qc en %.

Nota : les feuilles de sondages peuvent également contenir des informations complémentaires dont les niveaux d'eau éventuels, les pertes de fluide d'injection, les incidents de forage, etc.

Par ailleurs, les forages destructifs et carottés (notés SP et SC) de cette campagne d'investigation étant réalisés à l'eau, les niveaux d'eau en forage ne sont pas toujours identifiables ou peuvent être biaisés en raison de leur interférence avec les fluides de forage injectés.

Nous attirons l'attention sur la nécessité de reboucher les piézomètres ou les forages équipés avant le démarrage des travaux lorsque ces ouvrages se trouvent dans l'emprise du terrassement. En effet, recouper un forage équipé ou un piézomètre lors du terrassement en déblais peut conduire à des arrivées d'eau dans la fouille en cas de nappe artésienne. Nous restons à la disposition du client pour proposer un rebouchage selon les règles de l'art.

II.3.2. Piézométrie

Les équipements suivants ont été mis en place :

Sondage de	Description de l'équipement piézométrique mis en place				
référence / Diamètre	Equipement en tête	Ø du Tube	Profondeur du tube (m/TA)	Niveau de la partie crépinée (m/TA)	
SC1 Ø114 mm	Capot métallique de protection scellé au	ête Ø du Tube Profondeur du tube (m/TA) e de au Ø52/60 mm 19.5 m	19.5 m	Tube PVC lisse jusqu'à 1.5 m/TA	
001 211411111	terrain		Tube PVC crépiné de 1.5 m à 19.5 m/TA		

Les relevés des niveaux d'eau effectués ainsi que le détail des équipements mis en place sont indiqués sur les coupes de forage correspondantes.

Ce piézomètre fait l'objet d'un suivi piézométrique ponctuel et mensuel, sur une période de 12 mois, soit jusqu'en Janvier 2026, par GINGER CEBTP. Un compte-rendu spécifique sera rédigé en fin de campagne, précisant les niveaux d'eaux caractéristiques.

II.4. Sondages et essais in situ - campagne ALIOS 2023

Une campagne d'investigations avait déjà été réalisé sur ce même site en 2023 dans le cadre d'une précédente mission géotechnique d'avant-projet G2AVP, référencé ASE23042 réalisée par ALIOS.

Les investigations suivantes avaient été réalisées entre Mai et Juin 2023 :

Type de sondage	Quantité	Nom	Prof. / TA	Altitude NGF	Critère d'Arrêt/Refus
		SP1	8.26 m	69.90 m	Arrêt
		SP2	8.24 m	70.50 m	Arrêt
		SP3	8.20 m	68.50 m	Arrêt
		SP4	8.20 m	72.70 m	Arrêt
Sondage destructif (tricône Ø66mm + eau) avec enregistrement des paramètres en	10	SP5	8.20 m	73.90 m	Arrêt
continu et prélèvement de cuttings	10	SP6	8.27 m	75.80 m	Arrêt
		SP7	8.20 m	76.00 m	Arrêt
	SP9 8 SP10 8 SP10 8 SPD1 0 SPD2 2 SPD3 0 SPD4 1 SPD5 5	8.00 m	76.30 m	Arrêt	
		SP9	8.20 m	80.00 m	Arrêt
		SP10	8.20 m	81.00 m	Arrêt
Exécution d'essais pressiométriques . Norme NF EN ISO 22476-4	50				
		SPD1	0.60 m	78.00 m	Refus
		SPD2	2.60 m	75.80 m	Refus
		SPD3 0.50	0.50 m	75.00 m	Refus
			1.40 m	76.60 m	Refus
		SPD5	SPD4 1.40 m 76.60 m F SPD5 5.60 m 79.00 m F SPD6 6.00 m 77.50 m F	Refus	
		SPD5 5.60 m 79.00 m SPD6 6.00 m 77.50 m	Refus		
		SPD7	6.00 m	75.50 m	Refus
		SPD8	6.00 m	73.70 m	Refus
	32	SPD9	6.00 m	73.80 m	Refus
For all and the following New Alexanders and December 1		SPD10	1.60 m	77.50 m	Refus
Essai au pénétromètre dynamique type B Norme NF EN ISO 22476-2		SPD11	1.50 m	79.90 m	Refus
Norme Nr Liviso 22470-2		SPD12	0.90 m	78.30 m	Refus
		SPD13	1.40 m	76.80 m	Refus
		SPD14	0.60 m	75.50 m	Refus
		SPD15	1.00 m	77.90 m	Refus
		SPD16	0.80 m	79.50 m	Refus
		SPD17	2.80 m	70.60 m	Refus
		SPD18	2.80 m	69.80 m	Refus
		SPD19	3.80 m	69.90 m	Refus
		SPD20	5.00 m	71.20 m	Refus
		SPD21	1.10 m	70.60 m	Refus

Dossier : CAl2.O.260 Rapport 1 Indice 1 du 25/03/2025

Type de sondage	Quantité	Nom	Prof. / TA	Altitude NGF	Critère d'Arrêt/Refus
		SPD22	2.80 m	69.00 m	Refus
		SPD23	Nom TA NGF d'Arrêt/Re SPD22 2.80 m 69.00 m Refus SPD23 3.80 m 71.70 m Refus SPD24 5.00 m 70.50 m Refus SPD25 6.00 m 72.10 m Refus SPD26 0.40 m 73.00 m Refus SPD27 0.80 m 72.80 m Refus SPD28 4.80 m 68.80 m Refus SPD29 3.80 m 68.10 m Refus SPD30 4.20 m 68.70 m Refus SPD31 4.20 m 69.30 m Refus SPD32 4.80 m 69.00 m Refus PM1 1.30 m 74.80 m Arrêt PM2 2.00 m 72.20 m Arrêt PM3 1.70 m 67.40 m Arrêt PM4 1.00 m 75.00 m Refus	Refus	
		SPD24	5.00 m	70.50 m	Refus
		SPD22 2.80 m 69.00 m SPD23 3.80 m 71.70 m SPD24 5.00 m 70.50 m SPD25 6.00 m 72.10 m SPD26 0.40 m 73.00 m SPD27 0.80 m 72.80 m SPD28 4.80 m 68.80 m SPD29 3.80 m 68.10 m SPD30 4.20 m 69.30 m SPD31 4.20 m 69.00 m	72.10 m	Refus	
		SPD26	0.40 m	73.00 m	Refus
Essai au pénétromètre dynamique type B Norme NF EN ISO 22476-2	32	SPD27	0.80 m	72.80 m	Refus
Norme W LIVIOO 22470-2		SPD28	4.80 m	68.80 m	Refus
		SPD29	3.80 m	68.10 m	Refus
		SPD30	4.20 m	68.70 m	Refus
		SPD31	4.20 m	69.30 m	Refus
		SPD32	4.80 m	69.00 m	Refus
		PM1	1.30 m	74.80 m	Arrêt
		SPD25 6.00 m 72.10 m SPD26 0.40 m 73.00 m SPD27 0.80 m 72.80 m SPD28 4.80 m 68.80 m SPD29 3.80 m 68.10 m SPD30 4.20 m 68.70 m SPD31 4.20 m 69.30 m SPD32 4.80 m 69.00 m PM1 1.30 m 74.80 m PM2 2.00 m 72.20 m PM3 1.70 m 67.40 m PM4 1.00 m 75.00 m	72.20 m	Arrêt	
Fouille à la pelle mécanique	5	PM3	1.70 m	67.40 m	Arrêt
		PM4	1.00 m	75.00 m	Refus
		PM5	1.90 m	80.50 m	Arrêt

Les coupes des sondages et les pénétrogrammes sont présentés en **annexes 4, 5, 6 et 7**, où l'on trouvera en particulier les renseignements décrits ci-après :

Sondages destructifs (sondages notés SP) :

- Coupe approximative des sols (l'interprétation des sols à partir des forages de type destructif est faite uniquement d'après l'examen des cuttings, des courbes de pénétration des sols et des diagraphies)
- Diagraphie des paramètres de forage enregistrés :
 - V.A.: vitesse d'avancement instantanée (m/h),
 - P.O.: pression sur l'outil (bars),
 - P.I.: pression d'injection (bars),
 - C.R.: couple de rotation (bars).
- Essais pressiométriques :
 - Module pressiométrique : E_M (MPa),
 - Pression limite nette: p_i* (MPa),
 - Pression de fluage nette p_f* (MPa),
 - Rapport E_M/p_I*.

Essais au pénétromètre dynamique Lourd de type B (essais notés SPD) :

- Diagramme donnant la résistance dynamique en pointe qd en fonction de la profondeur et calculée selon la formule des Hollandais.
- Fouilles de reconnaissance à la pelle (fouilles notés PM) :
 - Coupe détaillée des sols,
 - Tenue des fouilles.
 - Prélèvements d'échantillons intacts et/ou remaniés,
 - Photographies de la fouille et des sols extraits.

Essais en laboratoire II.5.

II.5.1. Campagne 2024

Les essais suivants ont été réalisés sur les échantillons prélevés dans le sondage carotté :

Identification des sols	Nombre	Norme
Teneur en eau pondérale W	3	NF EN ISO 17892-1
Masse volumique	3	NF EN ISO 17892-2
Analyse granulométrique par tamisage	3	NF EN ISO 17892-4
Limites d'Atterberg Wı et Wp déterminées à la coupelle et au rouleau	3	NF P94-051
Valeur au bleu du sol (VBS)	3	NF P94-068
Classification des sols (GTR)	3	NF P11-300
Caractéristiques mécaniques	Nombre	Norme
Essai triaxial consolidé non drainé avec mesure de la pression interstitielle (CU + u)	1	NF EN ISO 17892-9
Indice de dégradabilité sur roche (ldg)	2	NF P 94-067
Indice de fragmentabilité sur roche (Ifr)	2	NF P 94-066

Nota: les prélèvements d'échantillons sont la propriété du client. Ils seront conservés pendant un mois à compter de l'envoi du rapport. S'il le souhaite, le client pourra donc soit récupérer ses prélèvements, soit demander à ce qu'ils soient conservés. A défaut de demande expresse, les prélèvements seront mis au rebus.

Les résultats des essais en laboratoire sont présentés en annexe 8 et commentés au chapitre III.1.3.

11.5.2. Campagne ALIOS 2023

Les essais suivants ont été réalisés sur les échantillons prélevés dans les fouilles :

Identification des sols	Nombre	Norme
Teneur en eau pondérale W	5	NF EN ISO 17892-1
Analyse granulométrique par tamisage	5	NF EN ISO 17892-4
Valeur au bleu du sol (VBS)	5	NF P94-068
Classification des sols (GTR)	5	NF P11-300

Les résultats des essais en laboratoire sont présentés en annexe 8 et commentés au chapitre III.1.3.

III. INTERPRETATIONS ET SYNTHESE DES INVESTIGATIONS – MODELE GEOTECHNIQUE

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 30/187

III.1. Synthèse des investigations - Interprétations

III.1.1. Lithologie

La profondeur des horizons est donnée par rapport au terrain naturel (noté TA) tel qu'il était au moment de la reconnaissance.

L'analyse et la synthèse des résultats des investigations réalisées ont permis de dresser la coupe géotechnique schématique suivante :

Horizon H1 : Terre végétale et remblais

Épaisseur :

Terre végétale : 0.10 m

• Remblais : 0.4 à 2.0 m, avec des surépaisseurs possibles.

Cote de la base : 67.3 à 80.4 m NGF.

Commentaires : Il s'agit de terre végétale limoneuse brune et de remblais sablo-graveleux

d'aménagement de la parcelle.

Horizon H2: Argile graveleuse et limons ± sableux

Profondeur: à partir de 0.10 à 2.0 m/TA jusqu'à 0.4 à 12.5 m/TA.

Cote de la base : 59.5 à 78.6 m NGF.

Commentaire : Il s'agit de terrains à dominance de sables graveleux contenant des passages

plus argileux et des passages composés majoritairement de blocs.

Horizon H3: Substratum marno-calcaire

Sous-horizon H3a : Marnes

Profondeur: à partir de 2.2 à 10.10 m/TA jusqu'à 2.80 à 14.00 m/TA.

Cote de la base : 54.89 à 74.5 m NGF.

Commentaire : Il s'agit du faciès marneux du substratum.

• Sous-horizon H3b : Calcaire

Profondeur : à partir de 5.6 à 14.00 m/TA jusqu'à l'arrêt des sondages, soit 22.0 m/TA pour le plus profond (SC1).

Commentaires : Il s'agit du substratum rocheux local composé de calcaire gris ± fracturé.

Pour une meilleure analyse, il a été établi ci-après une classification des horizons décrits cidessus au droit de chaque sondage.

Ouvrage	Campagne	Sondages	н		Н			'horizon 3a	H			efus(R) des lages
O	Car			lais/TV		vions		rnes		aire		
			m/TN	NGF	m/TN	NGF	m/TN	NGF	m/TN	NGF	m/TN	NGF
		PM1	0	74.8	1.00	73.8	-	-	-	-	1.30	73.5
		PM4	0	75.0	0.10	74.9	-	-	-	-	1.00	74.0
		PM5	0	80.5	0.10	80.4	-	-	-	-	1.90	78.6
		SP5	0	73.9	0.10	73.8	-	-	-	-	8.20	65.7
		SP6	0	75.8	0.10	75.7	-	-	-	-	8.27	67.5
		SP7	0	76.0	1.80	74.2	-	-	-	-	8.20	67.8
		SP8	0	76.3	1.20	75.1	-	-	5.60	70.7	8.00	68.3
		SP9	0	80.0	0.10	79.9	5.40	74.6	6.70	73.3	8.20	71.8
		SP10	0	81.0	2.00	79.0	5.50	75.5	6.50	74.5	8.20	72.8
		SPD1	0	78.0	-	-	-	-	-	-	0.60	77.4
		SPD2	0	75.8	0.40	75.4	-	-	-	-	2.60	73.2
	ALIOS 2023	SPD3	0	75.0	-	-	-	-	-	-	0.50	74.5
	35.2	SPD4	0	76.6	-	-	-	-	-	-	1.40	75.2
	4LIC	SPD5	0	79.0	1.80	77.2	5.00	74.0	5.60	73.4	5.60	73.4
		SPD6	0	77.5	1.20	76.3	-	-	-	-	6.00	71.5
þņ		SPD7	0	75.5	2.00	73.5	-	-	-	-	6.00	69.5
Bâtiment Sud		SPD8	0	73.7	0.10	73.6	-	-	-	-	6.00	67.7
ime		SPD9	0	73.8	0.10	73.7	-	-	-	-	6.00	67.8
Bât		SPD10	0	77.5	-	-	-	-	-	-	1.60	75.9
		SPD11	0	79.9	-	-	-	-	-	-	1.50	78.4
		SPD12	0	78.3	-	-	-	-	-	-	0.90	77.4
		SPD13	0	76.8	-	-	-	-	-	-	1.40	75.4
		SPD14	0	75.5	-	-	-	-	-	-	0.60	74.9
		SPD15	0	77.9	-	-	-	-	-	-	1.00	76.9
		SPD16	0	79.5	-	-	-	-	-	-	0.80	78.7
		CPT1	0	74.3	-	-	-	-	-	-	0.64	73.7
	4	CPT1BIS	0	74.3	0.10	74.2	-	-	-	-	3.46	70.8
	GINGER CEBTP 2024	CPT2	0	77.5	2.00	75.5	-	-	-	-	5.62	71.9
	3TP	СРТ3	0	76.9	-	-	-	-	-	-	1.33	75.5
	CEB	CPT3BIS	0	76.9	-	-	-	-	-	-	0.81	76.1
	ER	CPT4	0	78.9	-	-	-	-	-	-	1.54	77.4
	NG ING	CPT4BIS	0	78.9	-	-	-	-	-	-	1.60	77.3
	G	СРТ5	0	76.3	-	-	-	-	-	-	0.99	75.4
		CPT5BIS	0	76.4	-	-	-	-	-	-	1.20	75.2

Nota: - absent ou non atteint

2.00 70.2 1.70 65.7 3.26 61.6 3.24 62.3 3.20 60.3 3.20 64.5	m/TN 2.00 1.70		Toit de I H3					'horizon			$\underline{\Psi}$
N/TN NGF 2.00 70.2 1.70 65.7 3.26 61.6 3.24 62.3 3.20 60.3 3.20 64.5	m/TN 2.00 1.70	aire	H		114	^					agu
2.00 70.2 1.70 65.7 3.26 61.6 3.24 62.3 3.20 60.3 3.20 64.5	2.00 1.70		Cala		H:		H	ais/TV	H	Sondages	Campagne
2.00 70.2 1.70 65.7 3.26 61.6 3.24 62.3 3.20 60.3 3.20 64.5	2.00 1.70	NGF		nes NGF	Mar	NGF	Collu	NGF	m/TN		ပိ
1.70 65.7 3.26 61.6 3.24 62.3 3.20 60.3 3.20 64.5	1.70		m/TN		m/TN	72.1	m/TN	72.2	0	D1.42	
3.26 61.6 3.24 62.3 3.20 60.3 3.20 64.5		-	-	-	-	67.3	0.10	67.4	0	PM2	
3.24 62.3 3.20 60.3 3.20 64.5		-	-		-	69.8	0.10	69.9	0	PM3	
3.20 60.3 3.20 64.5		-	-		-	69.5	0.10	70.5	0	SP1	
3.20 64.5	1	62.1	-	-	-	67.5	1.00	68.5	0	SP2	
,,			6.40		-		1.00	72.7	0	SP3	
CO F		-	-	67.3	5.40	72.6	0.10			SP4	
0=0	1.10	-	-	-	-	-	-	70.6	0	SPD21	က္
	3.80	-	-	-	-	69.9	1.80	71.7	0	SPD23	ALIOS 2023
00.4	5.00	-	-	-	-	69.5	1.00	70.5	0	SPD24	08
=0.0	6.00	-	-	-	-	70.7	1.40	72.1	0	SPD25	AL.
	0.40	-	-	-	-	-	-	73.0	0	SPD26	
0.1.0	0.80	-	-	-	-	-	-	72.8	0	SPD27	
	4.80	-	-	-	-	68.7	0.10	68.8	0	SPD28	
	3.80	-	-	-	-	68.0	0.10	68.1	0	SPD29	
	4.20	-	-	-	-	68.6	0.10	68.7	0	SPD30	
	4.20	-	-	-	-	69.2	0.10	69.3	0	SPD31	
	4.80	-	-	-	-	68.9	0.10	69.0	0	SPD32	
	22.24	63.7	10.10			73.7	0.10	73.8	0	SP11	₽
	18.00	54.9	14.00	62.9	6.00	67.9	1.00	68.9	0	SP12	E
8.50 52.1	18.50	61.1	9.50	-	-	69.6	1.00	70.6	0	SP13	18
1.95 50.0	21.95	59.5	12.50	-	-	71.9	0.10	72.0	0	SP14	GINGER CEBTP
0.00 52.9	20.00	62.4	10.50	1	-	72.8	0.10	72.9	0	SC1	5
3.20 60.3	8.20	62.1	6.40	-	-	67.5	1.00	68.5	0	SP3	
3.20 64.5	8.20	-	-	67.3	5.40	72.6	0.10	72.7	0	SP4	
2.80 67.8	2.80	-	-	68.2	2.40	70.5	0.10	70.6	0	SPD17	023
2.80 67.0	2.80	-	-	67.6	2.20	69.7	0.10	69.8	0	SPD18	32
3.80 66.1	3.80	-	-	66.9	3.00	68.7	1.20	69.9	0	SPD19	Ę
5.00 66.2	5.00	-	-	66.8	4.40	69.2	2.00	71.2	0	SPD20	
	2.80	-	-	66.8	2.20	68.0	1.00	69.0	0	SPD22	
	7.00	-	-	-	-	72.9	0.10	73.0	0	SPD33	, _
22.2	7.00	-	-	66.4	6.60	72.9	0.10	73.0	0	SPD34	4
07.0	6.60	-	-	67.8		74.1		74.2	0		202
	2.40	-	-	-	-	75.2	0.10	75.3	0	SPD36	3TP
= 4.0	4.20	-	-	72.2	3.80	75.9	0.10	76.0	0	SPD37	CEE
efus 74 1	Refus	-		_		-		74 1	0		3ER
- Z -1: - x ' '''	immédiat		-		-		-			C1 10) N
	Refus immédiat	-		-		-		74.1	0	CPT6BIS	
5.0 2.8 7.0 7.0 5.6 2.4 1.2 efu	5.0 2.8 7.0 7.0 6.6 2.4 4.2 Refu immé	- - - -		66.8 66.8 - 66.4 67.8	4.40 2.20 - 6.60 6.40 -	69.2 68.0 72.9 72.9 74.1 75.2	2.00 1.00 0.10 0.10 0.10 0.10 0.10	71.2 69.0 73.0 73.0 74.2 75.3 76.0	0 0 0 0 0 0	SPD20 SPD22 SPD33 SPD34 SPD35 SPD36 SPD37 CPT6	GINGER CEBTP 2024 ALIOS 2023

Nota: – absent ou non atteint

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 33/187

Remarques:

- Nous rappelons qu'il n'est pas toujours évident de distinguer les variations horizontales et/ou verticales éventuelles, inhérentes aux changements de faciès, compte tenu de la surface investiguée par rapport à celle concernée par le projet. De ce fait, les caractéristiques indiquées précédemment ont un caractère représentatif mais non absolu,
- Au droit des essais de pénétration dynamique, les limites des couches sont extrapolées à partir des diagrammes (valeurs de compacité du sol) et de notre connaissance du contexte géologique. La nature des terrains et les limites des couches pourront être confirmées lors des phases ultérieures (études ou travaux).

III.1.2. Caractéristiques géomécaniques

Les essais mécaniques réalisés ont permis de définir les plages de variations suivantes :

		rizon 12		rizon I3a		izon 3b	
Paramètre	Colluvions sablo- graveleux		Ма	rnes	Calcaire		
	min	max	min	max	min	max	
Nombre d'essais	57 e	ssais	9 es	ssais	22 essais		
Pf* (MPa)	0.14	2.55	1.04	4.87	1.46	4.99	
11 (iiii u)	MG = 0.84		MG = 2.18		MG = 4.02		
PI* (MPa)	0.5	4.8	1.8	4.9	2.2	5.8	
· · · (wii a)	MG = 1.49		MG =	3.45	MG =	4.47	
EM (MPa)	2.8	68.3	32.4	288.5	99.1	936.3	
LIVI (IVIFa)	MH = 13.4		MH=	85.1	MH = 246.7		
α	1	1/2		1	1	1/2	
qd (MPa)	1	>20	15	>20	-	-	
qu (IVIFa)	VR	= 4	VR	= 18		-	
qc (MPa)	1	15	-	-	-	-	
qc (ivira)	VR = 10			=	-		

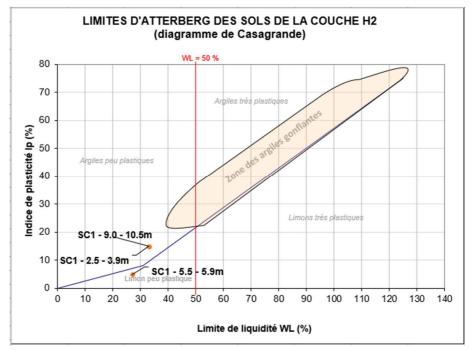
 pl^* = Pression limite nette EM = module pressiométrique α = coefficient rhéologique qd = résistance dynamique en pointe qc = résistance en pointe du pénétromètre statique (CPT) MG : moyenne géométrique ; MH : moyenne harmonique ; VR : Valeurs retenues

<u>Remarque</u>: les caractéristiques indiquées précédemment ont un caractère représentatif mais non absolu.

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 34/187

III.1.3. Résultats des essais en laboratoire

Les procès-verbaux des essais en laboratoire sont insérés en annexe 8.


Dans le tableau ci-dessous sont reportés les résultats des essais d'identification sur matériaux non rocheux :

	ES	SAIS D'IDENT	Classification	Teneur en eau		ométrie par nisage	Valeur au bleu	Masse volumique sèche	
				GTR	W		ssant	VBS	ρd
Sondage	Horizon	Profondeur	Type de sol	-	%	Dmax (mm)	à 80µm (%)	g/100g	kg/m³
				NF P11-300	NF P94-050	NF .	P94-056	NF P94-068	NF P 94-053
PM1	H1	1.00 – 1.30 m	Remblais sablo-graveleux	C1 B4	2.4	80	7.4	0.29	-
PM2	H2	1.10 – 2.00 m	Limon sablo-graveleux	B2	3.8	10	12	0.64	-
РМ3	H2	1.00 – 1.70 m	Sable graveleux et blocs	C1 B5	3.0	80	24.4	0.86	-
PM4	H2	0.50 – 1.00 m	Sable graveleux et blocs	C1 B5	3.8	80	14.6	0.35	-
PM5	H2	0.80 – 1.90 m	Sable limono-graveleux	B5	3.2	20	13.7	0.40	-
SC1	H2	2.50 - 3.90 m	Argile finement sableuse	A2 ts	12.2	50	52.9	1.48	1730
SC1	H2	5.50 – 5.90 m	Limon sableux	A 1	17.7	5	78.5	1.41	1880
SC1	H2	9.00 – 10.50 m	Graves à matrice argilo-sableuse	В6	10.0	50	22.6	1.06	1910

Selon le diagramme de Casagrande ci-dessous, les argiles de l'horizon H2 ne font pas parties de la zone des argiles dites gonflantes :

ESSAIS D'IDENTIFICATION				Classification	Teneur en eau	Lin	nites d'Atterb	erg			
Condogo	ndage Horizon Profondeur Type de sol		GTR	W	Limite de liquidité	Limite de plasticité	Indice de plasticité				
Sondage	HUIIZUII	Proionaeur	Prototiaeur	Prototiaeur	Proionaeur	Type de sol	-	%	WL (%)	WP (%)	lp
				NF P11-300	NF P94-050		NF P 94-051				
SC1	H2	2.50 - 3.90 m	Argile finement sableuse	A2 ts	12.2	33	18	15			
SC1	H2	5.50 – 5.90 m	Limon sableux	A 1	17.7	27	22	5			
SC1	H2	9.00 – 10.50 m	Graves à matrice argilo-sableuse	В6	10.0	33	18	15			

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 35/187

Dans le tableau ci-dessous sont reportés les résultats des de dégradabilité et fragmentabilité sur matériaux rocheux :

	ESS	AIS MÉCANIQI	Coefficient de dégradabilité	Coefficient de Fragmentabilité	
Sondage	Horizon	Profondeur	Type de sol	DG -	DF -
			71	NF P 94-067	NF P 94-066
SC1	НЗ	15.00 – 17.00 m	Calcaire	1.0	1.2

Les échantillons testés sont peu dégradable et peu fragmentable.

Dans le tableau ci-dessous sont reportés les résultats des essais triaxiaux sur matériaux non rocheux :

Harizan / typa da sal	Prof. (m)	W (%)	ov. (kN1/m3)	Triaxial CU + u			
Horizon / type de sol	échantillon	VV (%)	γ_d (kN/m ³)	φ' (°)	C' (kPa)	λcu (°)	
H2 / Limon sableux	5.5 – 5.9 m	22.0	1.66	29	5	0.47	

Légende :

Dossier: CAI2.O.260

W: Teneur en eau pondérale,

 γ_d : Poids volumique sec,

φ' / C' : Angle de frottement et cohésion effectifs,

λcu : Angle d'accroissement de la cohésion non drainée en fonction de la pression de

consolidation.

III.2. Piézométrie, niveaux d'eau

Aucun niveau d'eau n'a été relevé dans les sondages (absence d'eau ou mesure impossible car éboulement de sondages).

Des niveaux d'eau a été mesuré à 3.2 m en CPT2 et 3.55 m en CPT1BIS, indiquant la présence de circulation ou d'une nappe.

Un niveau d'eau non stabilisé en cours de forage a été noté à 5.8 m en SP12, mais possiblement influencé par le fluide de forage (eau).

Ces profondeurs correspondent à une cote altimétrique comprise entre 63.1 et 73.95 m NGF et correspondent à des niveaux d'eau rencontrés au sein des colluvions H2.

De plus, des circulations d'eau ponctuelles / anarchiques ne sont pas à exclure au sein des Remblais H1 et des Argiles graveleuse H2, ainsi qu'au toit du substratum marno-calcaire H3 notamment en cas de précipitations. Des circulations +/- importantes peuvent aussi être présentes au sein du substratum, aux interfaces marnes/ calcaire et dans les zones fracturées.

La situation sur le versant nord de la colline peut engendrer des nappes artésiennes.

Les niveaux d'eau dans le sol peuvent varier en fonction de la saison et de la pluviométrie. Les niveaux d'eau mesurés doivent donc être considérés à un instant donné.

Pour mieux préciser ce niveau, un piézomètre a été installé sur site avec un suivi basé sur des mesures périodiques (une fois tous les par mois) du niveau d'eau, sur une durée de 12 mois. La pose d'autres piézomètres pourra être nécessaire en fonction des premiers résultats.

III.3. Modèle géotechnique

L'analyse et la synthèse des résultats des investigations réalisées ont permis de dresser les modèles géotechniques suivant.

Au droit de la plateforme Sud : (±74 mNGF)

Horizon H1: Terre végétale et remblais

Épaisseur: 0.10 à 2.00 m

Cote de la base: 73.3 à 81.0 m NGF.

Commentaires : Il s'agit de terre végétale limoneuse brune et de remblais sablo-graveleux

d'aménagement de la parcelle.

Horizon H2: Argile graveleuse et limons ± sableux

Profondeur: à partir de 0.10 à 2.0 m/TA jusqu'à 5.4 à 5.6 m/TA.

Cote de la base : 70.7 à 75.5 m NGF.

Commentaire : Il s'agit de terrains à dominance de sables graveleux contenant des passages plus argileux et des passages composés majoritairement de blocs.

Caractéristiques mécaniques moyennes :

• PI* compris entre 0.79 et 4.80 MPa - VR = 1.49 MPa

E_M compris entre 13.1 et 37.3 MPa – VR = 15 MPa

Horizon n°H3: Substratum marno-calcaire

Sous-horizon H3a: Marnes

Profondeur : à partir de 5.4 à 5.5 m/TA jusqu'à 6.5 à 6.7 m/TA.

Cote de la base : 73.3 à 74.5 m NGF.

Commentaire : Il s'agit du faciès marneux du substratum. Caractéristiques mécaniques élevées à très élevées :

- PI* compris entre 1.8 et 4.87 MPa VR = 3.45 MPa
- E_M compris entre 78.9 et 246 MPa VR = 85 MPa

Sous-horizon H3b : Calcaire

Profondeur : à partir de 6.5 à 6.7 m/TA jusqu'à l'arrêt des sondages, 8.2 m/TA en SP9 et SP10 pour les plus profonds.

Commentaires : Il s'agit du substratum rocheux local composé de calcaire gris ± fracturé.

Caractéristiques mécaniques très élevées :

- PI* compris entre 2.85 et 4.93 MPa VR = 4.47 MPa
- E_M compris entre 101 et 936 MPa VR = 246 MPa

Au droit de la plateforme Nord : (±58 mNGF)

Horizon H1 : Terre végétale et remblais

Cote de la base : 69.6 à 73.7 m NGF.

Commentaires : Il s'agit de terre végétale limoneuse brune et de remblais sablo-graveleux

d'aménagement de la parcelle.

Épaisseur : 0.10 à 1.00 m

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 38/187

Horizon H2: Argile graveleuse et limons ± sableux

Profondeur: à partir de 0.10 à 1.0 m/TA jusqu'à 6.0 à 9.5 m/TA.

Cote de la base : 59.5 à 63.7 m NGF.

Commentaire : Il s'agit de terrains à dominance de sables graveleux contenant des passages plus argileux et des passages composés majoritairement de blocs.

Caractéristiques mécaniques moyennes :

- PI* compris entre 0.56 et 3.52 MPa VR = 1.49 MPa
- E_M compris entre 2.8 et 91.3 MPa VR = 15 MPa

Horizon n°H3: Substratum marno-calcaire

Sous-horizon H3a: Marnes

Profondeur : à partir de 6.0 m/TA jusqu'à 14.0 m/TA uniquement au droit de SP12.

Cote de la base : 54.9 m NGF.

Commentaire : Il s'agit du faciès marneux du substratum. Caractéristiques mécaniques élevées à très élevées :

- PI* compris entre 2.27 et 4.67 MPa VR = 3.45 MPa
- E_M compris entre 17.1 et 105.5 MPa VR = 60 MPa

Sous-horizon H3b : Calcaire

Profondeur : à partir de 6.0 à 14.0 m/TA jusqu'à l'arrêt des sondages, 22.0 m/TA en SP11 et SP14 pour les plus profonds.

Commentaires : Il s'agit du substratum rocheux local composé de calcaire gris ± fracturé.

Caractéristiques mécaniques très élevées :

- PI* compris entre 3.56 et 4.99 MPa VR = 4.47 MPa
- E_M compris entre 131 et 574 MPa VR = 246 MPa

Au droit de la plateforme intermédiaire : (±70 mNGF)

Horizon H1: Terre végétale et remblais

Épaisseur: 0.10 à 1.80 m

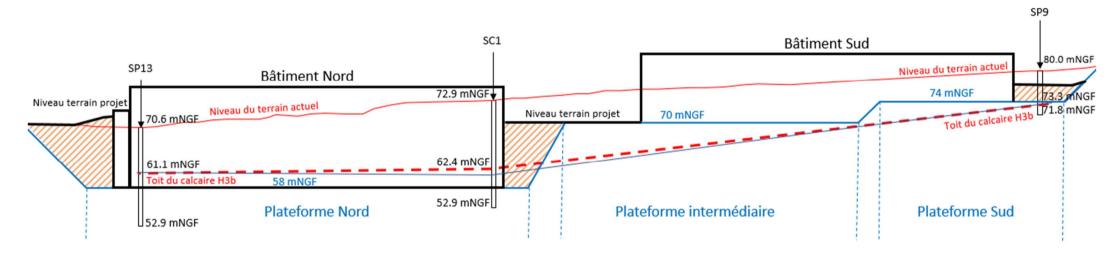
Cote de la base : 73.8 à 75.7 m NGF.

Commentaires : Il s'agit de terre végétale limoneuse brune et de remblais sablo-graveleux

d'aménagement de la parcelle.

Horizon H2: Argile graveleuse et limons ± sableux

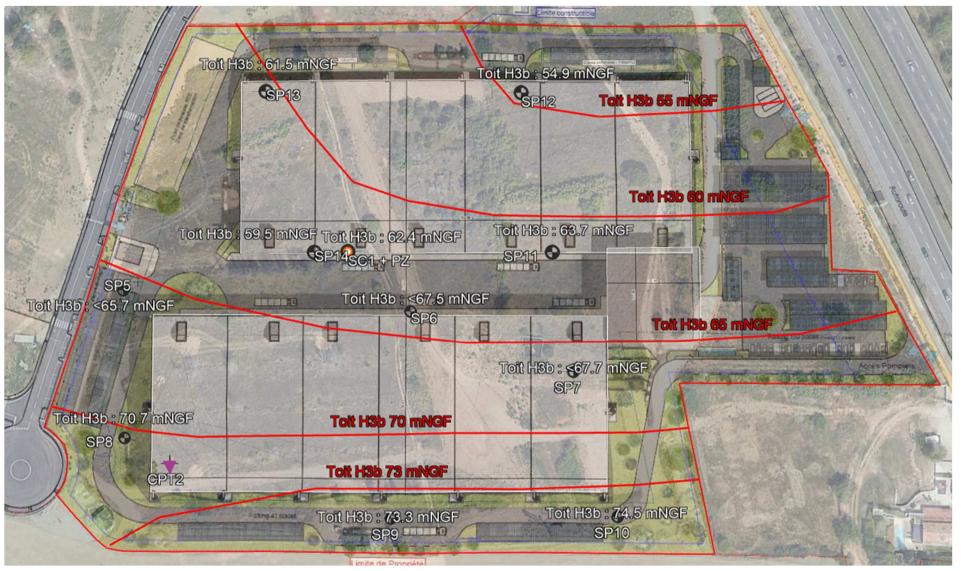
Profondeur : à partir de 0.10 à 1.8 m/TA jusqu'à l'arrêt des sondages, 8.3 m/TA en SP6 pour le plus profond.


Cote de la base : 70.7 à 75.5 m NGF.

Commentaire : Il s'agit de terrains à dominance de sables graveleux contenant des passages plus argileux et des passages composés majoritairement de blocs.

Caractéristiques mécaniques moyennes :

- PI* compris entre 0.6 et 1.2 MPa VR = 1.2 MPa
- E_M compris entre 9.2 et 51.6 MPa VR = 15 MPa


Coupe schématique projet avec modèle géotechnique

Coupe schématique projet annoté avec les cotes du toit du calcaire H3b et cotes basse estimées des plateformes

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 40/187

Plan projet avec toit de l'horizon calcaire H3b annoté a titre indicatif

IV. ETUDE DES OUVRAGES

Dossier: CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025

Page 42/187

IV.1. Zone d'Influence Géotechnique : ZIG

Le projet est concerné par la présence d'avoisinants :

- Au Sud et à l'Est, le site est bordé d'une voirie publique, Allée de la Broquette ;
- Au Sud-Ouest, le site est bordé par une propriété privée ;
- A l'Ouest le site est bordé par un voirie publique, Route de la Fonchenelle puis par l'Autouroute A7;
- Au Nord, le site est bordé par un bâtiment commercial et des parking appartenant à la société Tesla.

La zone d'influence géotechnique (ZIG) concerne donc le projet en lui-même, y compris ses fondations et réseaux enterrés propres et les avoisinants cité précédement.

IV.2. Traitement des risques majeurs ou anthropiques

IV.2.1. Argiles (retrait / gonflement)

Le projet est concerné par la présence d'argiles sensibles au retrait/gonflement (Argile graveleuse et limons H2 et marnes H3).

Des dispositions spécifiques sont à prévoir pour les fondations et le niveau bas.

Ces dispositions sont décrites dans les paragraphes des ouvrages géotechniques étudiés.

IV.2.2. Risque sismique

IV.2.2.1. Données réglementaires

Selon le décret n°2010-1255 et la norme NF EN 1998 (EUROCODE 8), les principales données parasismiques déduites des éléments du projet et des reconnaissances effectuées dans le cadre de cette étude et présentées dans les paragraphes précédents, figurent dans le tableau ci-dessous :

Paramètre	Référence	Valeur
Catégorie d'importance de bâtiment		II (à confirmer par le MOA)
Coefficient d'importance γι		1
Zone de sismicité	Arrêté	3 (modérée)
Accélération maximale de référence au rocher agr	22/10/10	1,1 m/s²
Accélération horizontale de calcul au rocher ag = γ ₁ *agr		1,1 m/s ²

$Vs30 = \frac{30}{\sum_{i} \frac{hi}{Vsi}}$	EC8	450 m/s
Classe de sol	Tableau 3.1 page 29 EC8- partie 1	B*
Paramètre de sol S	Arrêté 22/10/10	1,35

^{(*) :} la classe de sol a été déterminée en fonction d'une estimation de la Vs₃₀ (vitesse de propagation des ondes de cisaillement sur les 30 premiers mètres avec $V_{si}=1,85$ à $2,1\times\sqrt{E_{Mi}}$).

(**) les 30 premiers mètres de sols n'ayant pas été investigués (arrêt du sondage pressiométrique SP11 à 22 m), Vs₃₀ a été estimée avec la base de l'horizon calcaire prise à 30 m/TN.

Les spectres de réponse élastiques sont à déterminer en fonction des valeurs de T_B, T_C et T_D.

Paramètre	Composante verticale	Composante horizontale
T _B	0,03	0,05
T _C	0,20	0,25
T _D	2,5	2,5

La classe d'ouvrage devra être confirmée a minima avant les études de la phase projet.

Les accélérations sismiques ont été définies par corrélations avec les essais réalisés à ce stade.

IV.2.2.2. Liquéfaction

En l'absence de nappe et compte tenu des caractéristiques mécaniques des argiles graveleuse et limons H2 et calcaire H3b, le risque de liquéfaction des sols est négligeable.

IV.3. Adaptations du terrain au projet - Calage altimétrique

Le projet prévoit la réalisation de trois plateformes entièrement en déblai. Les déblais envisagés sont de grande ampleur et sont prévus jusqu'à 18 m/TA maximum sur la partie Sud du site et jusqu'à 3 m/TA maximum sur la partie Nord du site.

Les cotes basses des terrassement sont estimés comme suit (hypothèse en phase G2AVP) :

Plateforme Sud: 74 mNGF;

Plateforme intermédiaire : 70 mNGF ;

Plateforme Nord: 58 mNGF.

IV.4. Terrassements généraux - Fouilles

IV.4.1. Traficabilité en phase chantier

Les essais d'identification ont permis de classer les sols extraits comme suit selon le GTR :

- Horizon H1: Remblais de classe C₁B₄, (une seule valeur non représentative globalement les remblais seront constitués comme l'horizon H2 - A2, B5, B6, etc.)
- Horizon H2:
 - Sable limoneux de classe B2, B5 et B6,
 - Argile finement sableuse de classe A₁ et A₂,
 - Graves à matrice argilo-sableuse de classe C₁B₅.
- Horizon H3a: Marnes non identifiées. D'après notre expérience locale, ces terrains sont classé A₁ à A₂.
- Horizon H3b: Calcaire non identifiés. D'après notre expérience locale, ces terrains sont classé R₂.

Au droit des plateformes dont la cote basse seront dans les terrains de l'horizon H2 (Sud et intermédiaire) et compte tenu des classifications précédentes, les déblais concerneront les terrains des horizons H1 et H2 sensibles à l'eau. Par conséquent, les travaux devront être réalisés dans des conditions météorologiques favorables sinon le chantier peut rapidement devenir impraticable et nécessiter la mise en place de surépaisseurs en matériaux insensibles à l'eau.

Pour la platerforme Nord, dont la cote basse sera dans les terrains de l'horizon H3a et H3b, la traficabilité et la portance sera assuré.

IV.4.2. Terrassabilité des matériaux

La réalisation des déblais concernant la terre végétale et les remblais H1 et les Colluvions sablo-graveleux H2, ne présentera pas de difficulté particulière d'extraction. Les terrassements pourront donc se faire à l'aide d'engins classiques de moyenne puissance. La présence de niveaux blocailleux au sein des colluvions sablo-graveleux H2 pourrait néanmoins nécessiter l'emploi d'engins et/ou d'outils adaptés tels que pelle puissante, BRH, dérocteur.

La réalisation des déblais concernant les marnes H3a et les calcaires H3b nécessiterons l'emploi d'engins et/ou d'outils adaptés au rocher tels que pelle puissante, BRH, dérocteur, éclateur, etc.

Nous attirons l'attention sur le fait que ces procédés génèrent des vibrations dont il faudra tenir compte notamment vis-à-vis des avoisinants. Dans tous les cas, la technique de déroctage retenue devra tenir compte de la présence de mitoyens afin d'éviter tout désordre sur les avoisinants (limitation des vibrations, mesures de vibrations par pose de capteurs, et/ou géophones, etc.).

Une étude spécifique, qui ne relève pas des missions d'ingénierie géotechnique, pourra être réalisée par les concepteurs du projet.

IV.4.3. Drainage de la plateforme en phase chantier

La présence de venues d'eau au sein des argiles graveleuses H2 nécessitent de procéder à un drainage dès le démarrage du chantier (rigoles, épis, épuisement périphérique, etc.).

Les terrassements en déblai recouperont les niveaux d'eau observé au sein des sondages, il sera nécessaire de prévoir la gestion des eaux sur les plateformes (pentes, contrepentes, puisards sur plateforme aval avec pompe, etc.).

Les dispositions spécifiques prévisibles seront adaptées au cas par cas pour assurer la mise au sec de la plateforme de travail à tout moment (notamment merlon ou fossé périphérique pour protéger le chantier des eaux extérieures)

Toute zone décomprimée fera l'objet d'un traitement spécifique si elle doit recevoir un élément de l'ouvrage à porter (purge).

En fonction des résultats de l'étude hydrogéologique à mener, pour la phase provisoire et dans le cas d'une exhaure, il sera impératif de vérifier que les eaux d'exhaures peuvent être gérées (évacuation au réseau, rejet parcelle, infiltration sur site, etc.) et que dans le cas contraire, une solution pour réduire le débit voire s'affranchir de l'exhaure peut être nécessaire et donc conditionner les solutions géotechniques (paroi étanche, etc...).

IV.4.4. Réemploi des matériaux en remblais

La terre végétale et les remblais (H1) seront mis en décharge ou stockés dans les zones d'espaces verts.

Compte tenu des classes GTR des terrains identifiés au sein des colluvions H2 et de leur état d'humidité au moment des investigations, les matériaux de déblai du site pourront être réutilisés en remblai sous réserve que les conditions météorologiques soient favorables.

Pour la réalisation des remblais de hauteur moyenne (< 10m de hauteur), le réemploi des argiles graveleuses H2, sera conditionné à la connaissance fine de l'état hydrique des matériaux au moment de la réalisation des remblais. Compte tenu les classes GTR de ces matériaux, ils pourront être réemployé dans des états hydriques moyens (m) ou secs (s).

Les matériaux issus des déblais (horizon H2) sont sensibles à l'eau. Ils seront stockés provisoirement pour être réutilisés. Il sera nécessaire de maintenir ces matériaux dans un état hydrique m. Ils devront donc faire l'objet d'une attention particulière quant à leur stockage afin d'éviter leur saturation :

- Scarification et aération des matériaux dans un état hydrique très humide (th) et humide
 (h);
- Mise en œuvre du stock avec léger compactage ;
- Lissage de la surface à chaque arrêt de chantier;
- Pente de la surface pour évacuer les eaux ;
- Protection par polyane de la surface si longue période de stockage.

Les remblais seront réceptionnés par des essais à la plaque. Les critères de réception seront les suivants :

- EV2 > 50 MPa;
- EV2/EV1 < 2.

Dans tous les cas, l'utilisation de matériaux humides (h) sur le dernière mètre de remblai est à proscrire, pour éviter le matelassage au niveau Arase.

IV.4.1. Talus

Hors mitoyenneté et hors nappe, les talus **provisoires** de faibles hauteurs (<5m de hauteur) pourront être dressés comme suit :

- De 3 de base pour 2 de hauteur, dans les colluvions H2;
- De 1 de base pour 1 de hauteur, dans les marnes H3a;
- De 1 de base pour 5 de hauteur, dans les calcaires H3b.

Des risbermes intermédiaires de 2m de large pourrait être nécessaires dans l'horizon H2 ainsi qu'à l'interface entre les horizon H2 et H3b.

La stabilité des talus devra être étudiée précisément en G2PRO, en fonction des emprises et de niveaux d'eau (calculs à prévoir).

Ces pentes seront à adapter lors des terrassements si cela s'avère nécessaire.

Des hétérogénéités locales peuvent être rencontrées au fur et à mesure de l'ouverture des fouilles et provoquer des éboulements locaux. L'ensemble des talus devra être protégé des intempéries par des feuilles de polyane par exemple soigneusement fixées, des cunettes étanches en tête de talus.

Pour des hauteurs de talus supérieures à 5m, pour des talus plus raides ou pour des terrassement sous nappe, un confortement est à prévoir dans les horizons H2 et H3. Son dimensionnement fera l'objet d'une étude particulière spécifique en phase Projet (G2PRO).

Plusieurs solutions de confortement sont envisageables selon la réalité du terrain et des résultats de l'étude hydrogéologique à mener (données à titre indicatif) :

Solution n°1: Faibles venue d'eau:

Dossier: CAI2.O.260

Dans le cas de venue d'eau faible, une solution par écran de soutènement discontinu de type paroi lutécienne ou paroi berlinoise, voire une solution par pieux sécants utilisés comme éléments de fondations en phase définitive, peut être envisagée.

Dans le cas des pieux sécants, ils seront ancrés dans le substratum marno-calcaire H3 avec au minimum 1 lit de tirants.

Des drains subhorizontaux seront à prévoir à l'interface entre les Colluvions H2 et le substratum marno-calcaire H3. Des pointes filtrantes peuvent également être envisagées dans le cas de venues d'eau plus importantes.

Solution n°2: Venues d'eau importante:

Dans le cas de venue d'eau importante, une solution par écran de soutènement continu de type pieux sécants ou paroi moulée, ancrée dans le substratum marno-calcaire H3, doit être privilégiée.

Des drains subhorizontaux seront à prévoir à l'interface entre les Colluvions H2 et le substratum marno-calcaire H3.

<u>Hors mitoyenneté</u>, les talus **définitifs** de faibles hauteurs (<5m de hauteur), non surchargés pourront être dressés avec une pente de 3 de base pour 2 de hauteur. Une végétalisation rapide est nécessaire pour éviter les phénomènes de ravinement. Ils seront munis de cunettes étanches en tête et en pieds de talus, reliées à un exutoire étanche.

Pour des hauteurs de talus supérieures à 5m, la définition des pentes et la justification du dimensionnement devra faire l'objet d'une étude particulière spécifique en phase Projet (G2PRO).

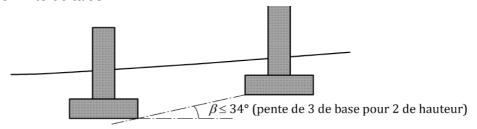
IV.5. Fondations

Compte tenu des éléments précédents, les solutions de fondation suivantes sont envisageables pour les différents ouvrages :

- Pour les bâtiments Sud et Nord plateformes estimées respectivement à 74 mNGF et 58 mNGF, une solution par fondations superficielles ancrées dans l'horizon H3 est envisageable;
- Pour les ouvrages fondées sur la plateforme intermédiaire estimée à 70 mNGF, une solution par fondations superficielles ancrées dans l'horizon H2 est envisageable.

IV.5.1. Justifications

Suivant la norme NF P 94 261, les vérifications doivent porter sur :


- Pour les situations à l'ELU :
 - Poinçonnement,
 - Glissement,
 - Excentrement de la charge,
- Pour les situations à l'ELS :
 - Limitation de la charge,
 - Excentrement de la charge,
 - Tassement.
- Justification du système de fondations au seisme.

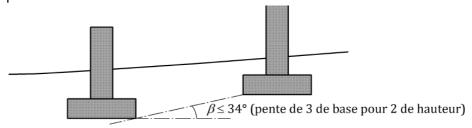
IV.5.2. Fondations superficelles

IV.5.2.1. Prescriptions générales – Bâtiments Nord et Sud

Comme critères définissant le niveau d'assise sur les plateforme Nord et Sud, on retiendra, parmi les suivants, le plus restrictif :

- ancrage minimal de 0.3 m dans l'horizon marno-calcaire porteur H3,
- respect de la norme NFP 94-261 pour les fondations à niveaux décalés, mitoyennes ou à proximité de talus :

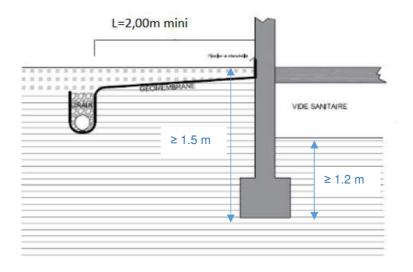
La définition exacte des dispositions à prendre en compte ne fait pas partie de la présente mission et devra faire l'objet d'une mission complémentaire dans le cadre d'une étude en phase projet (G2 PRO).

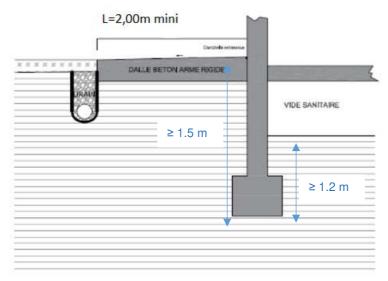


Il appartient au BET structure de prendre en compte les tassements différentiels et de concevoir une éventuelle rigidification de l'ouvrage.

IV.5.2.2. Prescriptions générales - Ouvrages sur plateforme intermédiaire

Comme critères définissant le niveau d'assise sur la plateforme intermédiaire, on retiendra, parmi les suivants, le plus restrictif :


- Ancrage minimal de 0.3 m dans l'horizon H2,
- Respect d'un encastrement minimal de 0.8 mètre par rapport au niveau fini du terrain, vis-à-vis du risque d'imbibition-dessiccation des sols fins,
- Respect de la norme NFP 94-261 pour les fondations à niveaux décalés, mitoyennes ou à proximité de talus :



Il conviendra de retenir les dispositions suivantes pour les sols sensibles au retrait/gonflement :

- Les fondations superficielles seront descendues à une profondeur minimale de 1.5 m par rapport au terrain fini extérieur (et 1,20 mini par rapport un niveau du sol dans un vide sanitaire mitoyen à la fondation). La profondeur de la dessiccation est une donnée très approximative au stade actuel des connaissances scientifiques. De ce fait, l'encastrement demandé des fondations doit impérativement être respecté ainsi que le chaînage,
 - Les fondations seront coulées à pleine fouille sur toute la hauteur afin de garder le sol d'assise à l'abri des variations hydriques. Les longrines seront disposées sans contact avec le sol en place pour être protégées vis-à-vis du gonflement du terrain.
- Il sera mis en œuvre une protection périphérique, d'au moins 2 m de largeur, avec une pente vers l'extérieur de telle sorte à récupérer et évacuer les eaux, par un drain en extrémité de protection. Cette protection pourra être une géomembrane étanche située environ à 10 cm de profondeur au droit du voile et descendant selon une pente régulière jusqu'au drain. Cette géomembrane sera recouverte de terre sur toute sa surface. Cette protection pourra aussi être un trottoir en béton. Dans ce cas, il devra être suffisamment ferraillé de telle sorte à éviter toute fissuration due au tassement différentiel lié aux sols décomprimés en surface (fonctionnement comme un bloc rigide). On veillera à l'étanchéité de la liaison protection périphérique / voile de l'ouvrage, pour éviter toute infiltration au niveau des fondations.

- Les eaux de toiture seront collectées avec un système de gouttières, et évacuées à distance des fondations,
- Les arbres seront éloignés des fondations, à une distance qui dépend de la nature de l'arbre et de son réseau racinaire. Ils pourraient nécessiter la mise en place d'un écran pour protéger les fondations des racines,
- Respecter une distance minimale de 1.5 fois la hauteur adulte de l'arbre entre l'ouvrage et l'arbre,
- On procédera à la rigidification de l'infrastructure du niveau bas, la rigidité maximale dans le sens de la plus grande portée,
- Des joints structurels seront mis en place sur toute la hauteur du bâtiment (y compris les fondations) au niveau de toute variation de descentes de charges ou du profil géologique (interface entre les argile H2 et calcaire H3b),
- On envisagera un vide sanitaire pour éviter de générer des efforts sur le niveau bas
- Proscrire toute infiltration d'eau et tout pompage à proximité de la construction,
- La structure sera rigidifiée (fondations, soubassement, plancher, chainages horizontaux et chainages verticaux) de telle sorte que l'ouvrage réagisse comme un bloc.

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 51/187

La définition exacte des dispositions à prendre en compte ne fait pas partie de la présente mission et devra faire l'objet d'une mission complémentaire dans le cadre d'une étude en phase projet (G2 PRO).

Il appartient au BET structure de prendre en compte les tassements différentiels et de concevoir une éventuelle rigidification de l'ouvrage.

IV.5.2.3. Ebauche dimensionnelle des fondations

Le prédimensionnement des fondations est mené à partir des résultats pressiométriques, conformément à la norme NFP 94-261 de juin 2013 (Justification des ouvrages géotechniques – Normes d'application nationale de l'Eurocode 7 – Fondations superficielles).

Capacité portante :

On s'assurera que la charge verticale transmise par la fondation superficielle au terrain V_d est inférieure à la résistance nette du terrain sous la fondation superficielle $R_{v:d}$:

$$V_{d} - R_{0} \le R_{v;d} \qquad \qquad R_{v;k} = \frac{A' q_{net}}{\gamma_{R;v}}$$

$$R_{v;k} = \frac{A' q_{net}}{\gamma_{R;d;v}}$$

Avec:

- R₀ est la valeur du poids de volume de sol constitué du volume de la fondation sous le terrain après travaux et des sols compris entre la fondation et le terrain après travaux – ici négligé,
- R_{v;d} est la valeur de calcul de la résistance nette du terrain sous la fondation superficielle,
- $\gamma_{R,v}$ est un facteur partiel à considérer, égal à 2.30 à l'ELS quasi-permanent et caractéristique et 1.40 à l'ELU pour les situations durables et transitoires,
- R_{v;k} est la valeur caractéristique de la résistance nette du terrain sous la fondation superficielle,
- A' est la surface effective de la base d'une fondation superficielle,
- q_{net} est la contrainte associée à la résistance nette du terrain sous la fondation superficielle,
- γ_{R;d;v} est le coefficient de modèle lié à la méthode de calcul utilisée pour le calcul de la contrainte q_{net} (1.20 pour la méthode pressiométrique)

Calcul de q_{net}, contrainte associée à la résistance nette du terrain sous la fondation superficielle :

La contrainte q_{net} du terrain sous une fondation est déterminée à partir de la relation suivante :

$$q_{net} = k_p.\,p_{le}^*.\,i_\delta.\,i_\beta$$
 pour la méthode pressiométrique (Eurocode 7)

Avec:

- k_p est le facteur de portance pressiométrique qui dépend des dimensions de la fondation, de son encastrement relatif et de la nature du sol,
- p_{le}* est la pression limite nette équivalente,
- i_{δ} est le coefficient de réduction de portance lié à l'inclinaison du chargement (on considère ici une charge verticale centrée, soit $i_{\delta}=1.00$)

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 52/187

- i_{β} est le coefficient de réduction de portance lié à la proximité d'un talus de pente β (pour une fondation éloignée à plus de 8xB d'un talus, i_{β} = 1.00)
- B la largeur de la semelle

Ainsi, pour une semelle filante ancrée dans les calcaires (H3b) selon les prescriptions données plus haut, en tablant sur $p_{le}^* = 4.47$ MPa et $k_p = 0.8$, il vient, hors coefficients de réduction : $q_{net} = 3.58$ MPa

Contraintes admissibles du terrain sous la fondation superficielle :

Il vient les contraintes maximales suivantes dans l'horizon H3b :

- à l'ELU, pour les situations durables et transitoires, une contrainte limitée à $\sigma_{Rv;d}$ ELU = 820.i δ .i $_{\beta}$ kPa
- à l'ELS quasi-permanent et caractéristique, une contrainte limitée à σ_{Rv:d ELS} = 500.iδ.i_β kPa

A titre d'information, les <u>capacités portantes</u> sont les suivantes **pour des semelles ancrées dans les calcaire H3b** et selon les principes donnés précédemment (hors coefficients de réduction .iδ.iβ):

Avec $\sigma_{Rv;dELS} =$	500 kPa	$\sigma_{Rv;dELU} = 820 \text{ kPa}$	
Largeur B de la semelle filante	R _{v ;d ELS}	R _{v;dELU}	
0.5 m	250 kN/ml	410 kN/ml	
0.8 m	400 kN/ml	656 kN/ml	
1 m	500 kN/ml	820 kN/ml	

Largeur B de la semelle carrée	R _{v ;d ELS}	R _{v ;d ELU}
0.8 m	320 kN	525 kN
1 m	500 kN	820 kN
1.2 m	720 kN	1 181 kN

Note : 1 tonne = 9,8 kN

La justification du dimensionnement devra faire l'objet d'une étude spécifique dans le cadre d'une étude de projet géotechnique (G2 PRO).

Estimations des tassements :

Compte-tenu des caractéristiques mécaniques mesurés dans le substratum calcaire H3b, cet horizon peut être considéré comme indéformable et les tassements nuls.

Pour une semelle filante ancrée dans les argiles graveleuses (H2) selon les prescriptions données plus haut, en tablant sur $p_{le}^* = 1.2$ MPa et $k_p = 0.8$, il vient, hors coefficients de réduction : $q_{net} = 0.96$ MPa

Dossier: CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 53/187

Contraintes admissibles du terrain sous la fondation superficielle :

Il vient les contraintes maximales suivantes dans l'horizon H2 :

- à l'ELU, pour les situations durables et transitoires, une contrainte limitée à σ_{Rv;d ELU} = 411.iδ.i_β kPa
- à l'ELS quasi-permanent et caractéristique, une contrainte limitée à σ_{Bv:d ELS} = 250.iδ.i_β kPa

A titre d'information, les <u>capacités portantes</u> sont les suivantes **pour des semelles ancrées dans les argiles graveleuses H2** et selon les principes donnés précédemment (hors coefficients de réduction .iδ.iβ) :

Avec σ_{Rv} ; d ELS = 250 kPa σ_{Rv} ; d ELU = 411 kPa

Largeur B de la semelle filante	R _{v ;d ELS}	R _{v ;d ELU}	
0.8 m	200 kN/ml	328.8 kN/ml	
1 m	250 kN/ml	411 kN/ml	
1.2 m	300 kN/ml	493.2 kN/ml	

Largeur B de la semelle carrée	R _{v ;d ELS}	R _{v ;d ELU}
1 m	250 kN	411 kN
1.2 m	360 kN	592 kN
1.4 m	490 kN	806 kN

Note: 1 tonne = 9.8 kN

La justification du dimensionnement devra faire l'objet d'une étude spécifique dans le cadre d'une étude de projet géotechnique (G2 PRO).

Estimations des tassements :

Conformément à l'exemple donné, pour une semelle de largeur 0.8 m chargée à 200 kN/ml, le tassement estimé est de l'ordre de 0.5 cm.

Les tassements ont été calculés selon les recommandations de l'annexe H norme NF P 94-261 pour des charges verticales centrées et pour des sollicitations et dimensions de semelles précises. On rappelle que les tassements sont dimensionnant pour les ouvrages. Ainsi, en fonction de l'admissibilité des tassements, une limitation de charge pourra s'appliquer.

Limites du pré-dimensionnement :

Dans le cas où les charges seraient inclinées, par exemple pour des semelles excentrées en limite de propriété, il conviendra d'appliquer les coefficients minorateurs $i\delta$ et i_{β} (cf. les recommandations de l'annexe D de la norme NF P 94-261).

Les éléments qui nous ont été fournis ne permettent pas de d'établir une ébauche dimensionnelle pour les combinaisons sismiques (pas de descentes de charges).

IV.5.3. Dispositions constructives

Les choix constructifs ne peuvent être faits que par le BET structure mais les points suivants sont toutefois à signaler :

- Il est recommandé de ne pas descendre la largeur des fondations en dessous de 0.5 m avec une surface au sol (assise) de 0.5 m² minimum pour une semelle isolée (soit 0.7 m x 0.7 m pour des semelles carrées), ceci pour des raisons de bonnes exécution (cela vise notamment à permettre d'assurer un enrobage correct des armatures standards)
- Dans les mêmes conditions, le niveau bas sera rigidifié au maximum pour limiter l'effet des tassements différentiels.
- En cas de deux bâtiments ou de deux parties d'un même bâtiment, fondés de façon différente ou présentant un nombre de niveaux différent, il conviendra de s'assurer que la structure peut s'adapter sans danger aux tassements différentiels qui pourraient se produire,
- Dans le cas contraire, les projeteurs devront prévoir un joint de construction intéressant toute la hauteur de l'ouvrage, y compris les fondations elles-mêmes,
- Il est impératif de récupérer les eaux météoriques et les éloigner des sols de fondation par un réseau d'évacuation spécifique.

Par ailleurs, des fondations établies à des niveaux différents et à proximité de talus doivent respecter la règle des 3 de base pour 2 de hauteur entre arêtes de fondations et/ou pied de talus (NF P 94-261 et NF DTU 13.1).

La présence d'eau pourra entraîner des sujétions de blindage des parois et de pompage pour épuisement des fouilles et/ou rabattement de la nappe lors des travaux de fondation.

Les fonds de fouilles seront nettoyés de tous matériaux éboulés ou remaniés, propres et horizontaux.

Sur une plateforme pré-terrassée ou reconstituée, les fondations doivent impérativement être coulées à pleine fouille et non coffrées à moins qu'il s'agisse de graviers insensibles aux intempéries et à la décompression.

La justification du dimensionnement devra faire l'objet d'une étude spécifique dans le cadre d'une étude de projet géotechnique (G2 PRO).

IV.6. Niveau bas

IV.6.1. Généralités

En fonction de l'étude hydrogéologique à mener, sur les plateformes Sud et intermédiaire, les terrains devraient en principe être secs jusqu'à la cote basse des terrassements (estimées à 74 mNGF et 70 mNGF).

Sur la plateforme Sud, la réalisation d'un dallage sur terre-plein est envisageable compte tenu de la qualité du sol support après terrassement (Calcaires H3b). Une couche de réglage uniquement sera nécessaire avant sa mise en œuvre.

Sur la plateforme intermédiaire, la réalisation d'un dallage sur terre-plein est envisageable après vérification du potentiel de gonflement des argiles graveleuse H2. Une couche de forme sera nécessaire avant sa mise en œuvre. Si le potentiel gonflant des argiles est démontré, on s'orientera alors sur une solution de dalle porté sur vide sanitaire.

Sur la plateforme Nord, la présence de venue d'eau recoupant les terrassements et comptetenu de la présence de l'horizon marneux H3a potentiellement gonflant, il convient de réaliser les préconisations suivantes pour orienter la solution d'adaptation du niveau bas :

- Vérification du potentiel de gonflement ou purge des marnes H3a;
- Étude hydrogéologique pour connaissance fine des circulations d'eau au niveau de la plateforme à créer.

En fonction des résultats, les solutions envisageables pourrait être les suivantes :

- Si le potentiel gonflant des marnes H3a n'est pas démontré ou si purge des marnes H3a et en l'absence de niveaux d'eau avérés une solution de dallage drainant ou de dallage sur terre-plein associé à une gestion périphériques des eaux est envisageable. Une couche de forme sera nécessaire avant sa mise en œuvre;
- Si le potentiel gonflant des marnes H3a n'est pas démontré ou si purge des marnes H3a et en **présence de niveaux d'eau avérés**, une solution de niveau bas par radier sur cuvelage ou plancher porté resitant au sous-pressions sera nécessaire.
- Si le **potentiel gonflant des marnes H3a est démontré**, on s'orientera alors sur une solution de dalle porté sur vide sanitaire ;

IV.6.2. Conception

La mise en œuvre de la structure sous dallage sera réalisée moyennant les précautions successives suivantes :

- Terrassement jusqu'au fond de forme qui sera constitué par l'horizon H2 ou H3,
- Purge éventuelle des poches médiocres et des sols détériorés par les engins de terrassement ou les eaux de pluie.

Ces remblais seront réceptionnés par des essais à la plaque. Les critères de réception seront EV2 > 50 MPa sur la couche de forme à long terme.

Les dallages seront conçus conformément au DTU 13.3 et désolidarisés de la structure et des fondations.

IV.7. Recommandations concernant les murs enterrés

D'après la coupe transmise, les murs enterrés formeront une boite fermée. Les voiles seront dimensionné en soutènement.

IV.7.1. Drainage à l'arrière des murs

L'arrière immédiat des murs périphériques devra prévoir un dispositif de drainage efficace de type drain routier en base de voile pris dans une chaussette géotextile remplie de matériaux drainant Ø 20/40 ou Ø 0/80 en D₂₁ ou D₃₁. Ce drainage devra inclure le rejet dans un exutoire adapté loin des fondations des ouvrages en projet ou des avoisinants.

IV.8. Protection des ouvrages vis-à-vis de l'eau

Il appartient aux concepteurs de s'assurer auprès des services compétents que le terrain n'est pas inondable.

Les préconisations suivantes seront à mettre à jour en fonction des résultats de l'étude hydrogéologique et de l'évolution future du projet.

Même pour une phase provisoire, dans le cas d'une exhaure, il sera impératif de vérifier que les eaux d'exhaures peuvent être gérées (évacuation au réseau, rejet parcelle, infiltration sur site, etc.) et que dans le cas contraire, des solutions pour réduire le débit voire s'affranchir de l'exhaure peut être nécessaire et donc conditionner les solutions géotechniques.

Pour la phase définitive, il convient de prévoir un drainage périphérique afin d'éviter l'infiltration et la circulation des eaux météoriques et des eaux de ruissellement, dans les remblais réalisés. Ces drainages sont à définir en fonction de l'ouvrage. Pour les ouvrages de bâtiment, on se réfèrera au DTU 20.1. Dans tous les cas, on s'assurera du bon entretien des ouvrages de drainage.

Nous rappelons que la technique retenue devra tenir compte du degré de protection souhaité des ouvrages et des possibilités de rejet disponibles. Aussi, en fonction du projet, plusieurs solutions sont envisageables pour se prémunir contre l'action de l'eau. :

- Dans le cas d'une nappe pérenne interceptant le niveau du sous-sol, un cuvelage étanche devra être réalisé. Le niveau bas sera alors conçu comme résistant aux souspressions;
- Dans le cas de venues d'eau intermittentes de faibles débits, un pompage/drainage sous dallage avec évent de décompression pourra être réalisé (si acceptation d'une inondation ponctuelle du sous-sol).

Le système de drainage devra être conforme aux normes en vigueur. On veillera également à la bonne étanchéité des réseaux, regards, fosses et à leur raccordement vers des exutoires adaptés.

Ces choix seront établis à l'issus d'un suivi piézométrique et de l'étude hydrogéologique, à lancer le plus tôt possible, pour éviter les solutions surdimensionnées.

Note importante relative aux pompages destinés aux rabattement de nappe :

En cas d'interaction de la nappe avec des niveaux bas, et à compter du 22 juillet 2020, la Direction Départementale des Territoires et de la Mer des Bouches-du-Rhône adopte la stratégie suivante pour la gestion quantitative de la ressource en eau :

- Pour les pompages permanents en phase chantier, le rejet des eaux pompées devra se faire dans la nappe prélevée ou à défaut dans le milieu naturel. Si cela est techniquement impossible, ce qui devra être démontré, il devra se faire dans le réseau d'assainissement pluvial et non dans un réseau unitaire ou d'assainissement.
- Les pompages de rabattement de nappe permanents qui correspondent au fonctionnement normal d'un bâtiment en phase d'exploitation ne sont pas autorisés.

IV.9. Protection des ouvrages vis-à-vis du risque sismique

Dispositions générales à respecter :

- Système de fondation homogène sous un même corps de bâtiment, à moins de délimiter des parties par joints parasismiques;
- Éviter les fondations isolées ; en cas de sol rocheux continu, non fracturé et non délité, ce dernier peut être considéré comme assurant la liaison entre les fondations isolées ;
- Ne pas fonder les constructions à cheval sur deux ou plusieurs types de sol de caractéristiques géotechniques très différentes, ou sur des discontinuités naturelles du sol : fractures, ressauts, brusque, changement de pente, etc...;
- Veiller à ce que l'assise des fondations soit horizontale ;
- Avoir un seul niveau de fondation et un niveau identique de fondation pour un même corps d'ouvrage. Si la stratification des couches géologiques est inclinée, la totalité des fondations doit descendre dans un niveau de sol identique, éventuellement avec décrochement de niveaux bas, de préférence inférieur à 1.2 m;
- Ne pas fonder les ouvrages sur des sols liquéfiables ;
- Éviter impérativement toute accumulation d'eau de ruissellement autour des constructions (drainage périphérique efficace avec des regards de visite) ;
- Prévoir tous les éléments raidisseurs dans la structure, tels que chaînages, voiles, même courts en longueur, poteaux de même hauteur plutôt longs que courts, notion de couple poteaux forts / poutres faibles à respecter.

Dossier: CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 59/187

IV.10.Zones de voiries et réseaux divers (VRD)

Dans le cadre de notre mission qui comporte un prédimensionnement des structures sous voiries, les indications données ici constituent une première approche, qui devra être complétée par un dimensionnement complet en phase PRO (G2 PRO).

IV.10.1. Référentiels

Pour l'ébauche dimensionnelle des structures, nous avons utilisé le guide technique de réalisation des remblais et des couches de forme SETRA & LCPC de Septembre 1992 revue en Mai 2023 (GTR)

IV.10.2. Partie Supérieure des Terrassements (PST) et classe d'arase

La partie supérieure des terrassements sera constituée par des remblais d'apports de type C1B4 à C1B5.

Pour les zones de PF en remblai, les matériaux mis en oeuvre devront permettre une PST n°2 AR1.

Les travaux devront être réalisés en période météorologique favorable pour permettre une circulation des engins sur la PST sans difficulté.

IV.10.3. Couche de forme

Les caractéristiques de la couche de forme (matériaux utilisés et épaisseurs) sont fournies dans le fascicule II du GTR 92, en fonction des classes de PST et AR.

Pour obtenir une PF2 (EV2 ≥ 50 MPa) à partir d'une PST n°2, AR 1, il est nécessaire d'appliquer les préconisations suivantes :

Etat hydrique de la PST	Classe PST / AR	Amélioration de la PST	Couche de forme
th	PST 0 / AR 0	Drainage latéral + traitement à la chaux* sur 50 cm d'épaisseur Ou Drainage latéral + matériaux d'apport type R21 sur 50 cm d'épaisseur	0.35 m de matériaux A2 traités au liant et éventuellement à la chaux
h	PST 1 / AR 1	Traitement à la chaux sur 50 cm d'épaisseur Ou Matériaux d'apport type R21 sur 50 cm d'épaisseur	0.30 m de matériaux de type R21 (0/60 ou 0/100) au-dessus d'un géotextile

Dossier: CAI2.O.260

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

Etat hydrique de la PST	Classe PST / AR	Amélioration de la PST	Couche de forme	
m	PST 2 / AR 1		0.35 m de matériaux A2 traités au liant	
s			et éventuellement à la chaux	
ts	PST 3 / AR 1	Pas nécessaire	ou	
to			0.30 m de matériaux de type R21 (0/60 ou 0/100) au-dessus d'un géotextile	

^{*}Sous réserve de la vérification de l'aptitude au traitement des sols

Nota : 30 cm de CDF en plus pour obtenir une PF2qs (EV2 ≥ 80 MPa) si trafic PL.

Dans le cas de matériau d'apport extérieur, une couche de forme calcaire 0/31,5 à 0/80 pourra être retenue ou d'autres matériaux granulaires insensibles à l'eau.

Pour prononcer la réception de la plateforme, il sera nécessaire de contrôler l'ensemble de ces points :

- La qualité des matériaux ;
- La bonne mise en œuvre (compactage, épaisseur des couches, réglage, etc.) des matériaux;
- La portance (avec un module de déformation EV2 ≥ 50 MPa pour une PF2);
- L'efficacité des dispositifs de drainage et d'assainissement.

V. ENCHAINEMENT DES ETUDES ULTERIEURES

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 62/187

Les conclusions du présent rapport ne sont valables que sous réserve de nos conditions générales et des missions d'ingénierie géotechnique selon la norme NF P94-500 de novembre 2013 (extrait en annexe).

Nous rappelons que cette étude est une mission de niveau G2 menée en phase Avant-Projet.

A ce stade G2AVP, il reste des incertitudes sur :

- <u>La définition du toit du rocher et son plongement</u>, notamment au niveau de la plateforme intermédiaire (à lever par des sondages de type destructifs);
- <u>La proportion de marnes H3a au niveau de la Plateforme Nord,</u> à vérifier par sondages carottés et essais de gonflement;
- <u>La réutilisation possible de l'horizon calcaire H3b</u>, qui pourrait être valorisée (essais Los Angeles, Microdeval, etc.) à réaliser dans des sondages carottés;
- <u>L'étude de l'hydrogéologie</u>, à lever par une étude spécifique complète, afin de définir les niveaux d'eau, l'évolution de la nappe et les débits possibles, qui seront dimensionnants dans les systèmes de fondations et de tenue des talus/parois surtout sur le talus entre Plateforme Nord et intermédiaire. Cette étude doit être lancée le plus tôt possible, avec des sondages piezométriques sur tous les bâtiments (car la variation du toit du substratum est forte).

Ces sondages complémentaires pourront être réalisés en phase G2PRO, mais si les cotes du projet sont confirmées, devraient être lancées dès que possible, afin de pouvoir affiner les solutions techniques.

Ginger CEBTP se tient à disposition pour la réalisation des missions géotechniques suivantes.

Conformément à la norme NF P94-500 de novembre 2013, il est nécessaire d'enchainer les études d'ingénierie géotechniques avec les phases suivantes :

- Etude géotechnique de conception phase PROJET (G2 PRO),
- Etude géotechnique de conception phase DCE/ACT (G2 DCE / ACT),
- Puis, après attribution du marché de travaux, les études géotechniques de réalisation
 G4.

ANNEXE 1 – NOTES GENERALES SUR LES MISSIONS GEOTECHNIQUES

- Classification des missions types d'ingénierie géotechnique,
- Schéma d'enchainement des missions types d'ingénierie géotechnique.

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 64/187

Enchaînement des missions d'ingénierie géotechnique

Enchaînement des missions G1 à G4	Phases de la maîtrise d'œuvre	Mission d'ingénierie géotechnique (GN) et Phase de la mission		Objectifs à atteindre pour les ouvrages géotechniques	Niveau de management des risques géotechniques attendu	Prestations d'investigations géotechniques à réaliser
Étape 1 : Étude géotechnique préalable (G1)		Étude géotechnique préalable (G1) Phase Étude de Site (ES) Étude géotechnique préalable (G1) Phase Principes Généraux de Construction (PGC)		Spécificités géotechniques du site	Première identification des risques présentés par le site	Fonction des données existantes et de la complexité géotechnique
	Étude préliminaire, esquisse, APS			Première adaptation des futurs ouvrages aux spécificités du site	Première identification des risques pour les futurs ouvrages	Fonction des données existantes et de la complexité géotechnique
Étape 2 : Étude géotechnique de conception (G2)	APD/AVP	Étude géotechnique de conception (G2) Phase Avant-projet (AVP)		Définition et comparaison des solutions envisageables pour le projet	Mesures préventives pour la réduction des risques identifiés, mesures	Fonction du site et de la complexité du projet (choix constructifs)
	PRO	Étude géotechniqu (G2) Phase Projet (PRC		Conception et justifications du projet	correctives pour les risques résiduels avec détection au plus tôt de leur	Fonction du site et de la complexité du projet (choix constructifs)
	DCE/ACT	Étude géotechniqu (G2) Phase DCE / ACT	e de conception	Consultation sur le projet de base / Choix de l'entreprise et mise au point du contrat de travaux	survenance	
Étape 3 : Études géotechniques		À la charge de l'entreprise	À la charge du maître d'ouvrage			
de réalisation (G3/G4)	EXE/VISA	Étude et suivi géotechniques d'exécution (G3) Phase Étude (en interaction avec la phase Suivi)	Supervision géotechnique d'exécution (G4) Phase Supervision de l'étude géotechnique d'exécution (en interaction avec la phase Supervision du suivi)	Étude d'exécution conforme aux exigences du projet, avec maîtrise de la qualité, du délai et du coût	Identification des risques résiduels, mesures correctives, contrôle du management des risques résiduels (réalité des actions, vigilance, mémorisation, capitalisation des retours d'expérience)	Fonction des méthodes de construction et des adaptations proposées si des risques identifiés surviennent
	DET/AOR	Étude et suivi géotechniques d'exécution (G3) Phase Suivi (en interaction avec la phase Étude)	Supervision géotechnique d'exécution (G4) Phase Supervision du suivi géotechnique d'exécution (en interaction avec la phase Supervision de l'étude)	Exécution des travaux en toute sécurité et en conformité avec les attentes du maître d'ouvrage		Fonction du contexte géotechnique observé et du comportement de l'ouvrage et des avoisinants en cours de travaux
À toute étape d'un projet ou sur un ouvrage existant	Diagnostic	Diagnostic géotechnique (G5)		Influence d'un élément géotechnique spécifique sur le projet ou sur l'ouvrage existant	Influence de cet élément géotechnique sur les risques géotechniques identifiés	Fonction de l'élément géotechnique étudié

L'enchaînement des missions d'ingénierie géotechnique (étapes 1 à 3) doit suivre les étapes de conception et de réalisation de tout projet pour contribuer à la maîtrise des risques géotechniques. Le maître d'ouvrage ou son mandataire doit faire réaliser successivement chacune de ces missions par une ingénierie géotechnique. Chaque mission s'appuie sur des données géotechniques adaptées issues d'investigations géotechniques appropriées.

ÉTAPE 1 : ÉTUDE GÉOTECHNIQUE PRÉALABLE (G1)

Cette mission exclut toute approche des quantités, délais et coûts d'exécution des ouvrages géotechniques qui entre dans le cadre de la mission d'étude géotechnique de conception (étape 2). Elle est à la charge du maître d'ouvrage ou son mandataire. Elle comprend deux phases :

Phase Étude de Site (ES)

Elle est réalisée en amont d'une étude préliminaire, d'esquisse ou d'APS pour une première identification des risques géotechniques d'un site.

- Faire une enquête documentaire sur le cadre géotechnique du site et l'existence d'avoisinants avec visite du site et des alentours.
- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport donnant pour le site étudié un modèle géologique préliminaire, les principales caractéristiques géotechniques et une première identification des risques géotechniques majeurs.

Phase Principes Généraux de Construction (PGC)

Elle est réalisée au stade d'une étude préliminaire, d'esquisse ou d'APS pour réduire les conséquences des risques géotechniques majeurs identifiés. Elle s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un rapport de synthèse des données géotechniques à ce stade d'étude (première approche de la ZIG, horizons porteurs potentiels, ainsi que certains principes généraux de construction envisageables (notamment fondations, terrassements, ouvrages enterrés, améliorations de sols).

ÉTAPE 2 : ÉTUDE GÉOTECHNIQUE DE CONCEPTION (G2)

Cette mission permet l'élaboration du projet des ouvrages géotechniques et réduit les conséquences des risques géotechniques importants identifiés. Elle est à la charge du maître d'ouvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou intégrée à cette dernière. Elle comprend trois phases :

Phase Avant-projet (AVP)

Elle est réalisée au stade de l'avant-projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats
- Fournir un rapport donnant les hypothèses géotechniques à prendre en compte au stade de l'avant-projet, les principes de construction envisageables (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions générales vis-à-vis des nappes et des avoisinants), une ébauche dimensionnelle par type d'ouvrage géotechnique et la pertinence d'application de la méthode observationnelle pour une meilleure maîtrise des risques géotechniques.

Phase Projet (PRO)

Elle est réalisée au stade du projet de la maîtrise d'œuvre et s'appuie obligatoirement sur des données géotechniques adaptées suffisamment représentatives pour le site.

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Fournir un dossier de synthèse des hypothèses géotechniques à prendre en compte au stade du projet (valeurs caractéristiques des paramètres géotechniques en particulier), des notes techniques donnant les choix constructifs des ouvrages géotechniques (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions vis-à-vis des nappes et des avoisinants), des notes de calcul de dimensionnement, un avis sur les valeurs seuils et une approche des quantités.

Phase DCE / ACT

Elle est réalisée pour finaliser le Dossier de Consultation des Entreprises et assister le maître d'ouvrage pour l'établissement des Contrats de Travaux avec le ou les entrepreneurs retenus pour les ouvrages géotechniques.

- Établir ou participer à la rédaction des documents techniques nécessaires et suffisants à la consultation des entreprises pour leurs études de réalisation des ouvrages géotechniques (dossier de la phase Projet avec plans, notices techniques, cahier des charges particulières, cadre de bordereau des prix et d'estimatif, planning prévisionnel).
- Assister éventuellement le maître d'ouvrage pour la sélection des entreprises, analyser les offres techniques, participer à la finalisation des pièces techniques des contrats de travaux.

ÉTAPE 3 : ÉTUDES GÉOTECHNIQUES DE RÉALISATION (G3 et G 4, distinctes et simultanées)

ÉTUDE ET SUIVI GÉOTECHNIQUES D'EXECUTION (G3)

Cette mission permet de réduire les risques géotechniques résiduels par la mise en œuvre à temps de mesures correctives d'adaptation ou d'optimisation. Elle est confiée à l'entrepreneur sauf disposition contractuelle contraire, sur la base de la phase G2 DCE/ACT. Elle comprend deux phases interactives :

Phase Étude

- Définir si besoin un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier dans le détail les ouvrages géotechniques : notamment établissement d'une note d'hypothèses géotechniques sur la base des données fournies par le contrat de travaux ainsi que des résultats des éventuelles investigations complémentaires, définition et dimensionnement (calculs justificatifs) des ouvrages géotechniques, méthodes et conditions d'exécution (phasages généraux, suivis, auscultations et contrôles à prévoir, valeurs seuils, dispositions constructives complémentaires éventuelles).
- Élaborer le dossier géotechnique d'exécution des ouvrages géotechniques provisoires et définitifs: plans d'exécution, de phasage et de suivi.

Phase Suivi

- Suivre en continu les auscultations et l'exécution des ouvrages géotechniques, appliquer si nécessaire des dispositions constructives prédéfinies en phase Étude.
- Vérifier les données géotechniques par relevés lors des travaux et par un programme d'investigations géotechniques complémentaire si nécessaire (le réaliser ou en assurer le suivi technique, en exploiter les résultats).
- Établir la prestation géotechnique du dossier des ouvrages exécutés (DOE) et fournir les documents nécessaires à l'établissement du dossier d'interventions ultérieures sur l'ouvrage (DIUO)

SUPERVISION GÉOTECHNIQUE D'EXECUTION (G4)

Cette mission permet de vérifier la conformité des hypothèses géotechniques prises en compte dans la mission d'étude et suivi géotechniques d'exécution. Elle est à la charge du maître d'ouvrage ou son mandataire et est réalisée en collaboration avec la maîtrise d'œuvre ou intégrée à cette dernière. Elle comprend deux phases interactives :

Phase Supervision de l'étude d'exécution

 Donner un avis sur la pertinence des hypothèses géotechniques de l'étude géotechnique d'exécution, des dimensionnements et méthodes d'exécution, des adaptations ou optimisations des ouvrages géotechniques proposées par l'entrepreneur, du plan de contrôle, du programme d'auscultation et des valeurs seuils.

Phase Supervision du suivi d'exécution

- Par interventions ponctuelles sur le chantier, donner un avis sur la pertinence du contexte géotechnique tel qu'observé par l'entrepreneur (G3), du comportement tel qu'observé par l'entrepreneur de l'ouvrage et des avoisinants concernés (G3), de l'adaptation ou de l'optimisation de l'ouvrage géotechnique proposée par l'entrepreneur (G3).
- donner un avis sur la prestation géotechnique du DOE et sur les documents fournis pour le DIUO.

DIAGNOSTIC GÉOTECHNIQUE (G5)

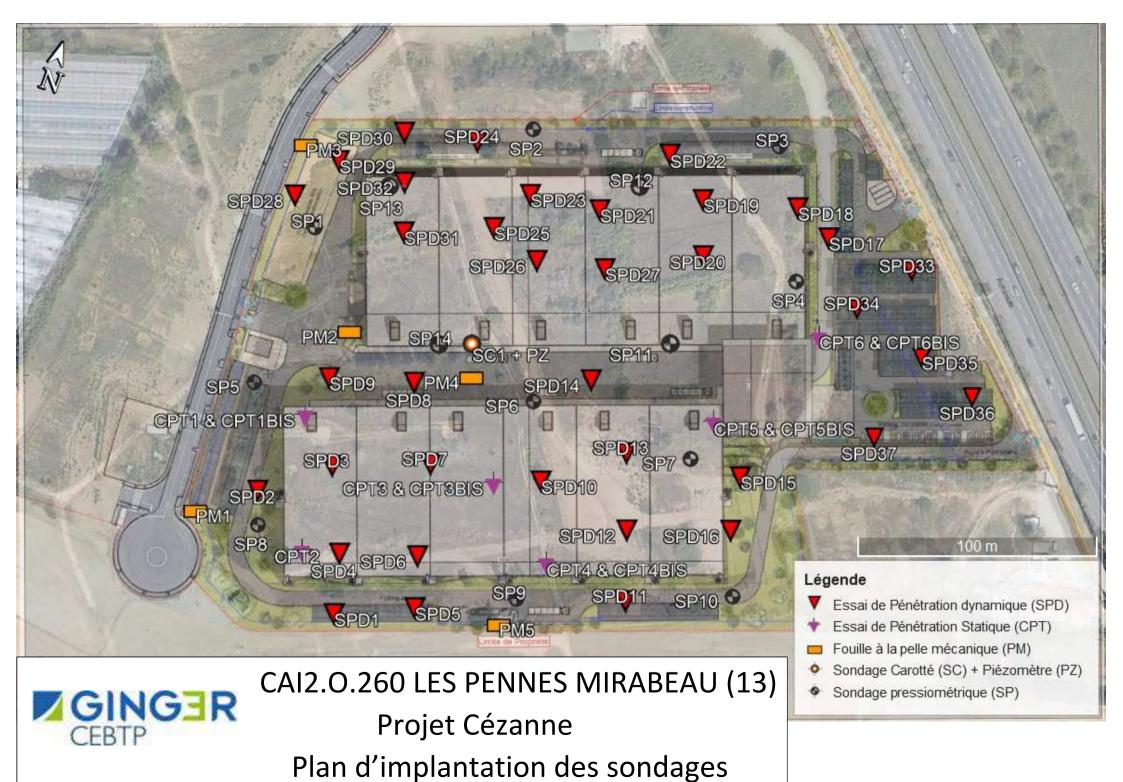
Pendant le déroulement d'un projet ou au cours de la vie d'un ouvrage, il peut être nécessaire de procéder, de façon strictement limitative, à l'étude d'un ou plusieurs éléments géotechniques spécifiques, dans le cadre d'une mission ponctuelle. Ce diagnostic géotechnique précise l'influence de cet ou ces éléments géotechniques sur les risques géotechniques identifiés ainsi que leurs conséquences possibles pour le projet ou l'ouvrage existant.

- Définir, après enquête documentaire, un programme d'investigations géotechniques spécifique, le réaliser ou en assurer le suivi technique, en exploiter les résultats.
- Étudier un ou plusieurs éléments géotechniques spécifiques (par exemple soutènement, causes géotechniques d'un désordre) dans le cadre de ce diagnostic, mais sans aucune implication dans la globalité du projet ou dans l'étude de l'état général de l'ouvrage existant.
- Si ce diagnostic conduit à modifier une partie du projet ou à réaliser des travaux sur l'ouvrage existant, des études géotechniques de conception et/ou d'exécution ainsi qu'un suivi et une supervision géotechniques seront réalisés ultérieurement, conformément à l'enchaînement des missions d'ingénierie géotechnique (étape 2 et/ou 3).

ANNEXE 2 - PLAN D'IMPLANTATION DES SONDAGES

- Campagne d'investigations ALIOS 2023;
- Campagne d'investigations GINGER CEBTP 2025 ;
- Plan d'implantation global

IMPLANTATION DES SONDAGES SUR PLAN TOPOGRAPHIQUE



CEBTP LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

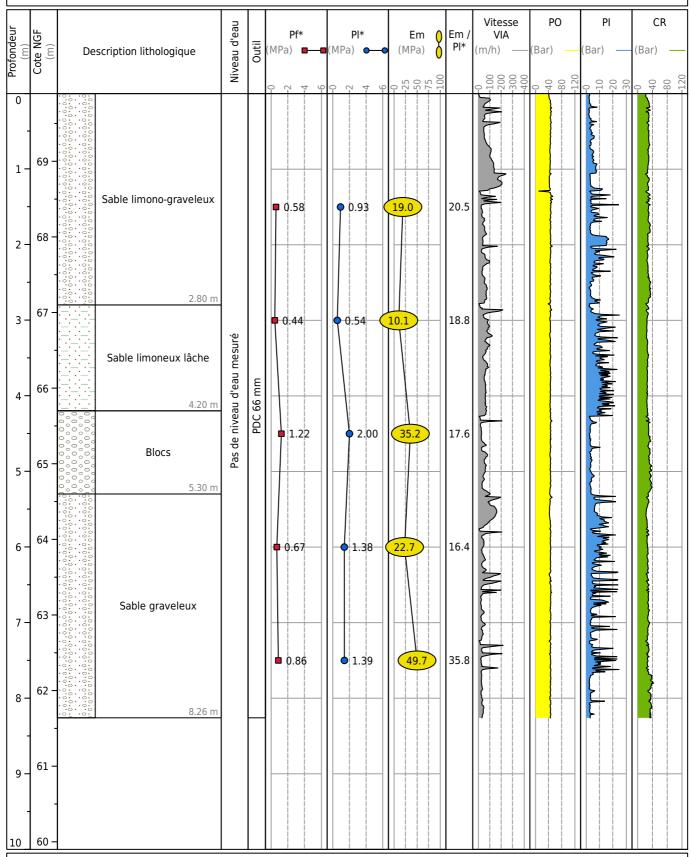
Client: APL

PLAN D'IMPLANTATION

ANNEXE 3 – SONDAGES, ESSAIS IN-SITU ET LABORATOIRE ALIOS 2023

- Sondages destructifs :
 - Coupes des sondages destructifs,
 - Niveau d'eau éventuel,
 - Courbes pressiométriques éventuelles (p_f*, p_i*, E_M et E_M/p_i*),
 - Diagrammes des enregistrements de paramètres :
 - V.I.A.: vitesse instantanée d'avancement (m/h),
 - P.O.: pression sur l'outil (bars),
 - P.I.: pression d'injection (bars),
 - C.R.: couple de rotation (bars).
- Sondages à la pelle mécanique :
 - Coupes détaillée des sols,
 - Tenue des fouilles,
 - Niveau d'eau éventuel.
 - Prélèvements d'échantillons intacts et/ou remaniés,
 - Photographies des fouilles à la pelle et des matériaux extraits.
- Essais de pénétration dynamique :
 - Pénétrogrammes,
 - Niveau d'eau éventuel,
 - Coupes approximatives des sols éventuelles,
 - Valeurs de frottements éventuelles.

13170 PENNES MIRABEAU


Client: SMII

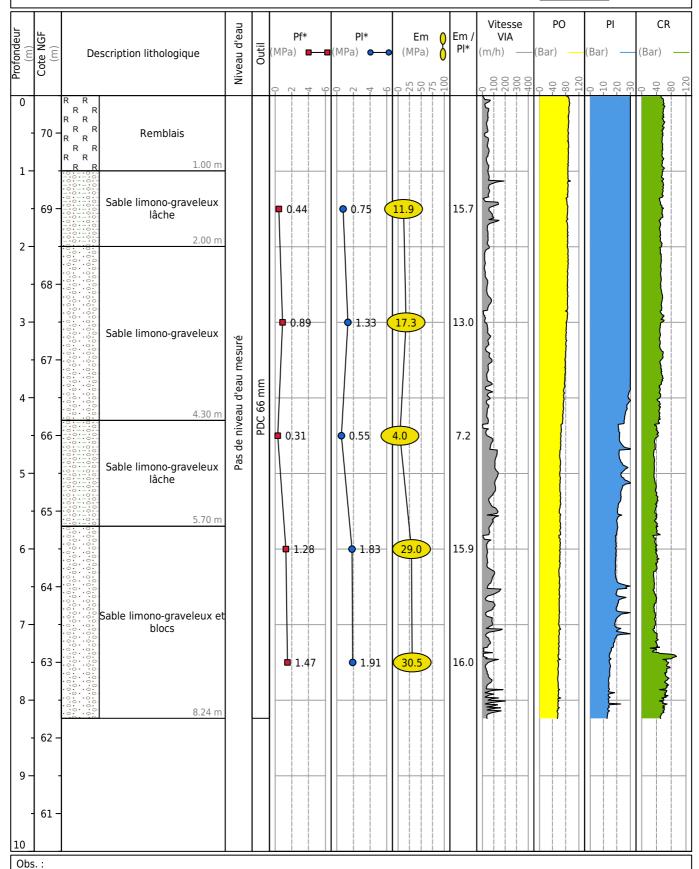
Dossier: ASE23042

Z(NGF): 69.90 m

SONDAGE SP1

Pressiomètre
Date: 31/05/2023
Profondeur: 8.26 m

13170 PENNES MIRABEAU


Client: SMII

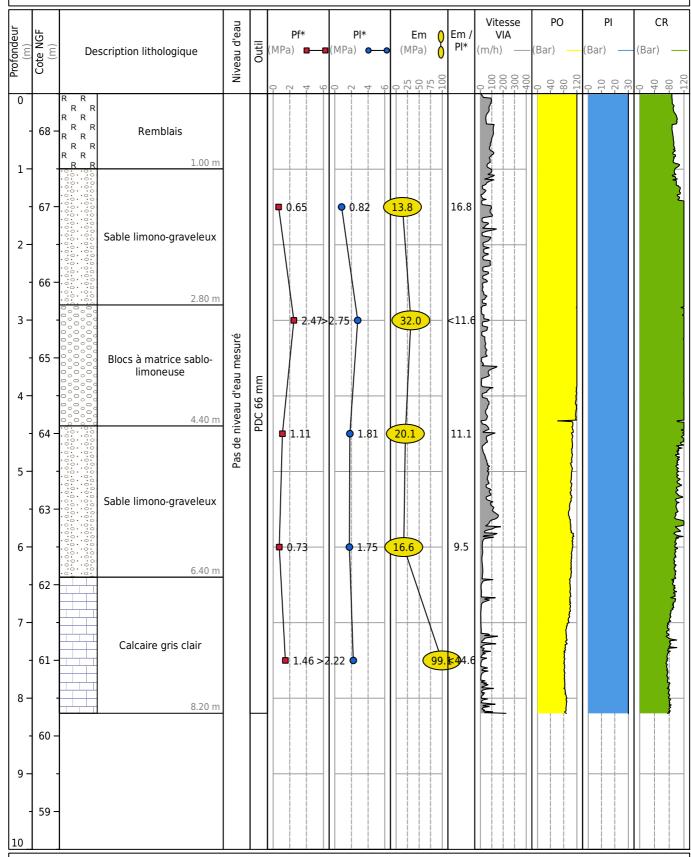
Dossier: ASE23042

Z(NGF): 70.50 m

SONDAGE SP2

Pressiomètre
Date: 25/05/2023
Profondeur: 8.24 m

13170 PENNES MIRABEAU


Client: SMII

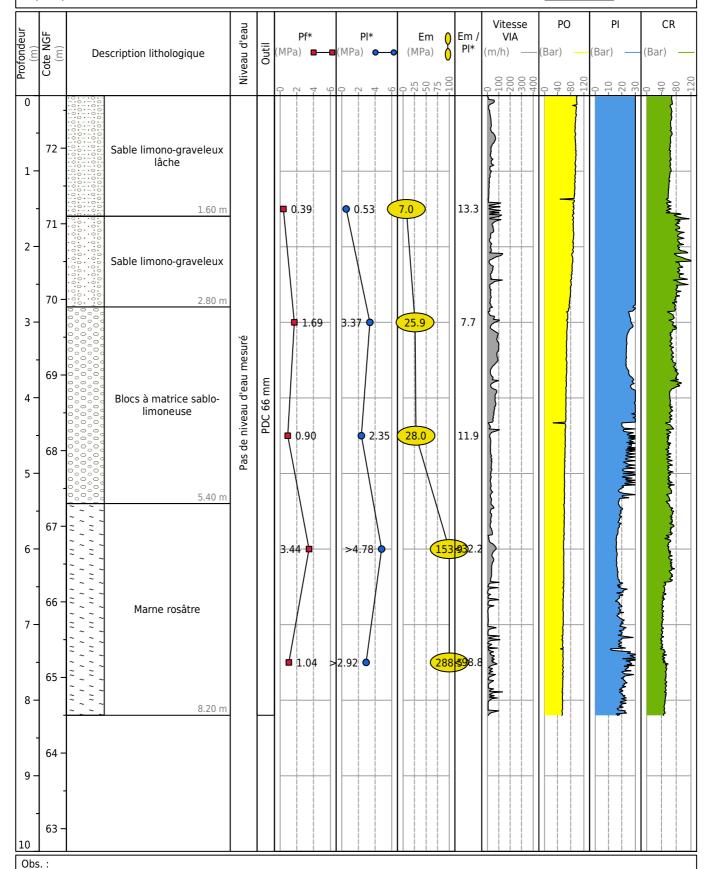
Dossier: ASE23042

Z(NGF): 68.50 m

SONDAGE SP3

Pressiomètre
Date: 25/05/2023
Profondeur: 8.20 m

13170 PENNES MIRABEAU


Client : SMII

Dossier: ASE23042

Z(NGF): 72.70 m

SONDAGE SP4

Pressiomètre
Date: 26/05/2023
Profondeur: 8.20 m

13170 PENNES MIRABEAU

Client: SMII

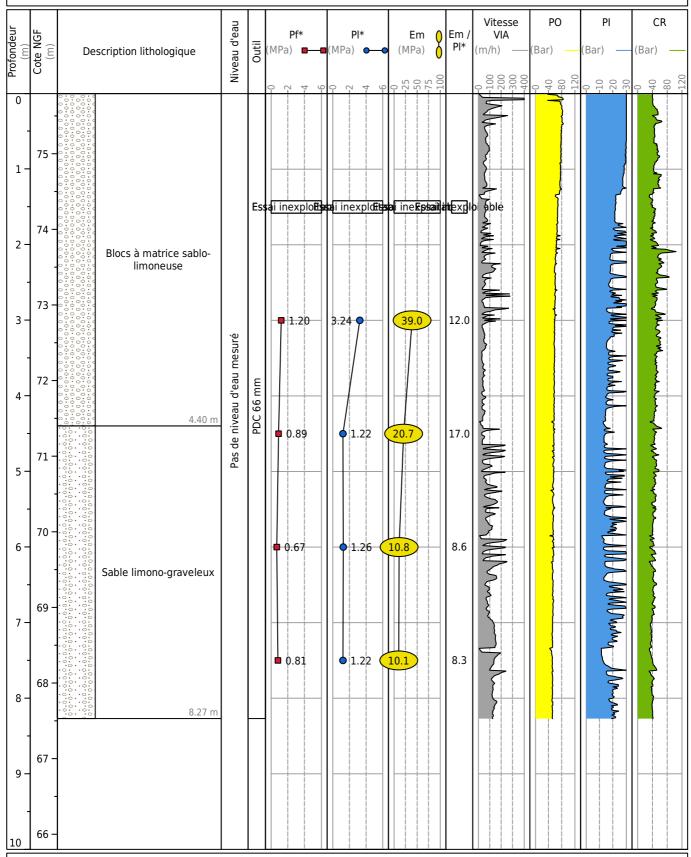
Dossier: ASE23042

Z(NGF): 73.90 m

SONDAGE SP5

Pressiomètre
Date: 31/05/2023
Profondeur: 8.20 m

13170 PENNES MIRABEAU


Client : SMII

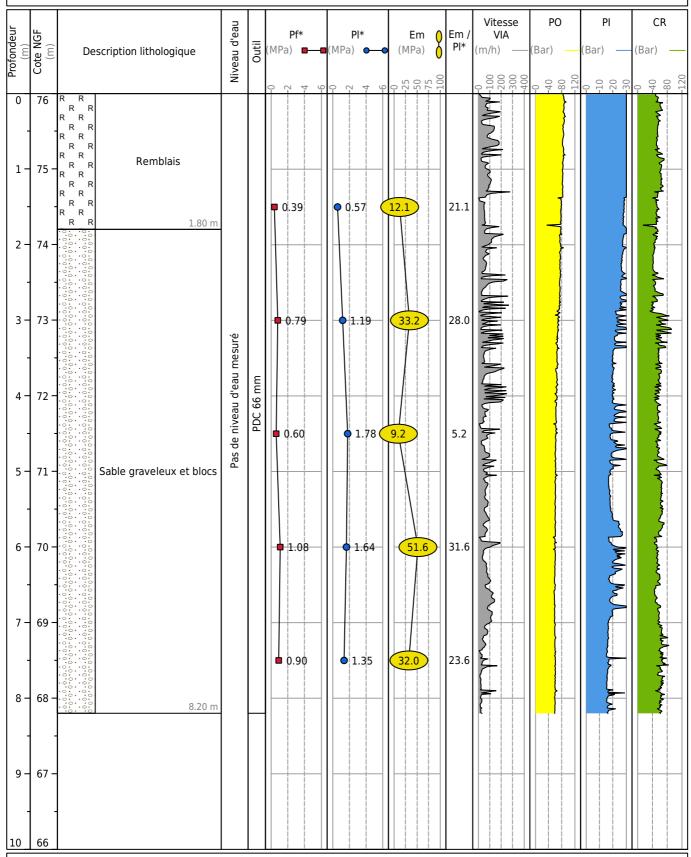
Dossier: ASE23042

Z(NGF): 75.80 m

SONDAGE SP6

Pressiomètre
Date: 23/05/2023
Profondeur: 8.27 m

13170 PENNES MIRABEAU


Client : SMII

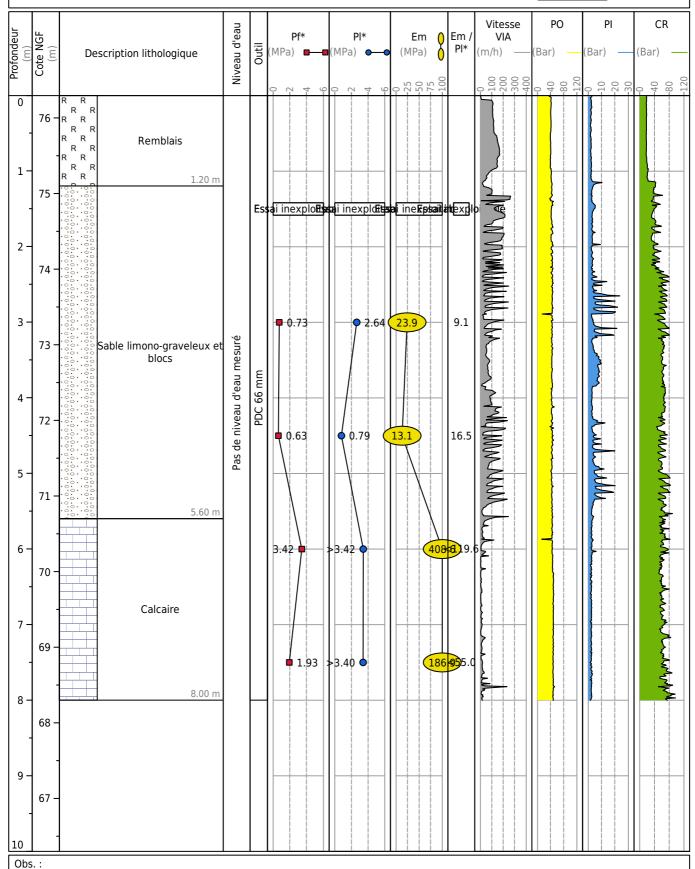
Dossier: ASE23042

Z(NGF): 76.00 m

SONDAGE SP7

Pressiomètre
Date: 22/05/2023
Profondeur: 8.20 m

13170 PENNES MIRABEAU


Client: SMII

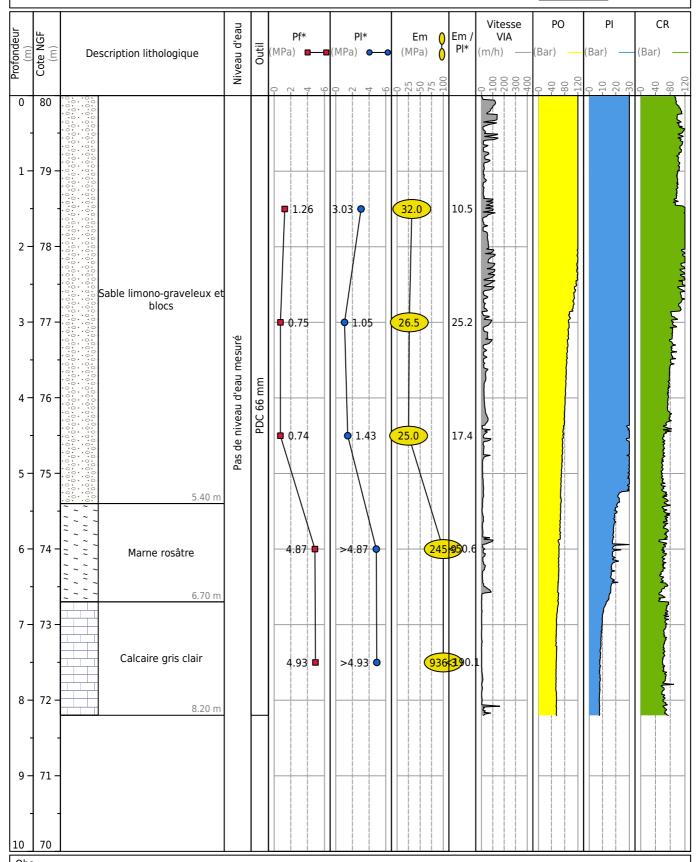
Dossier: ASE23042

Z(NGF): 76.30 m

SONDAGE SP8

Pressiomètre
Date: 30/05/2023
Profondeur: 8.00 m

13170 PENNES MIRABEAU


Client : SMII

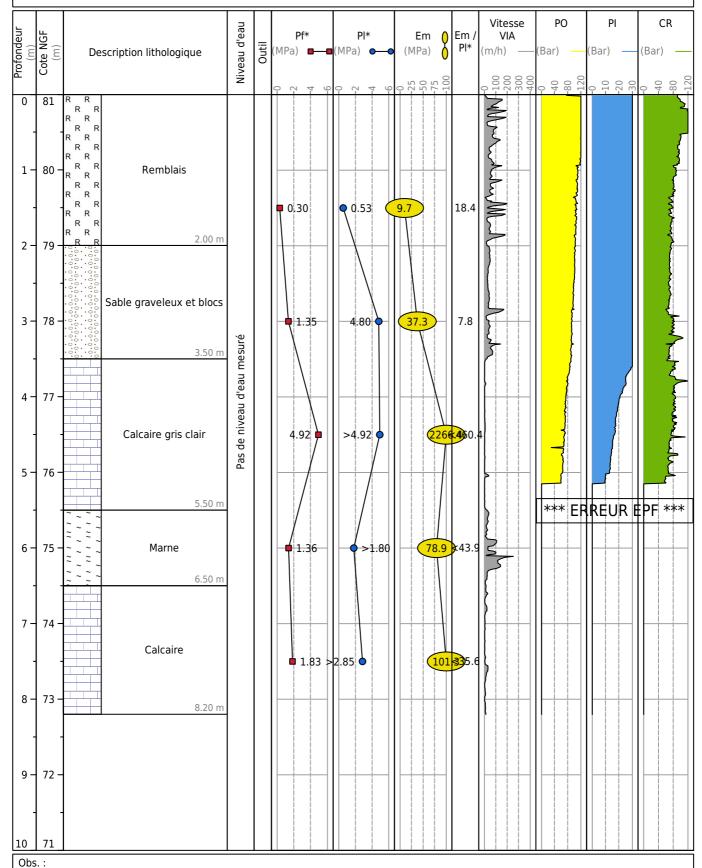
Dossier: ASE23042

Z(NGF): 80.00 m

SONDAGE SP9

Pressiomètre
Date: 23/05/2023
Profondeur: 8.20 m

13170 PENNES MIRABEAU


Client: SMII

Dossier: ASE23042

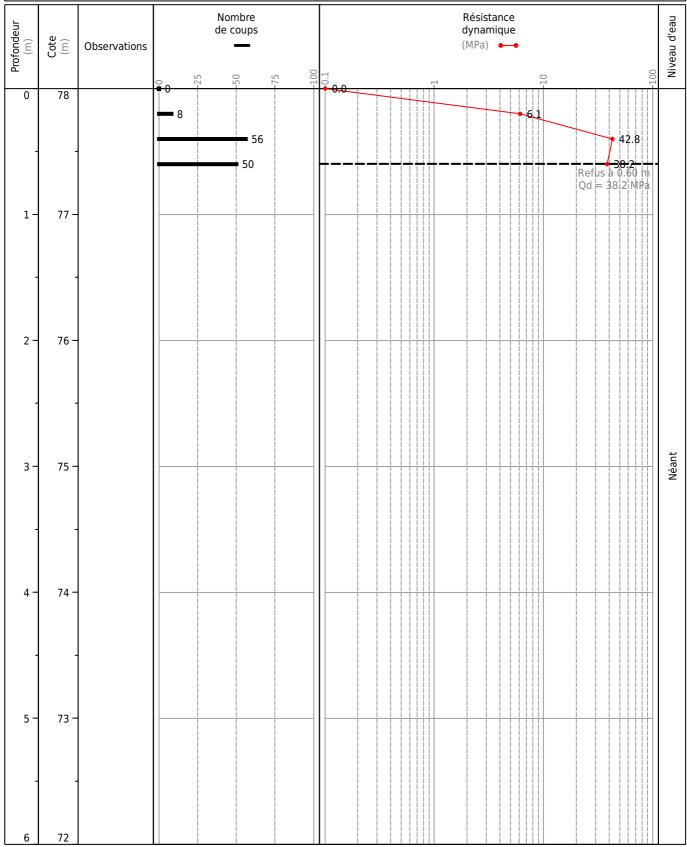
Z(NGF): 81.00 m

SONDAGE SP10

Pressiomètre
Date: 22/05/2023
Profondeur: 8.20 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 78.00 m

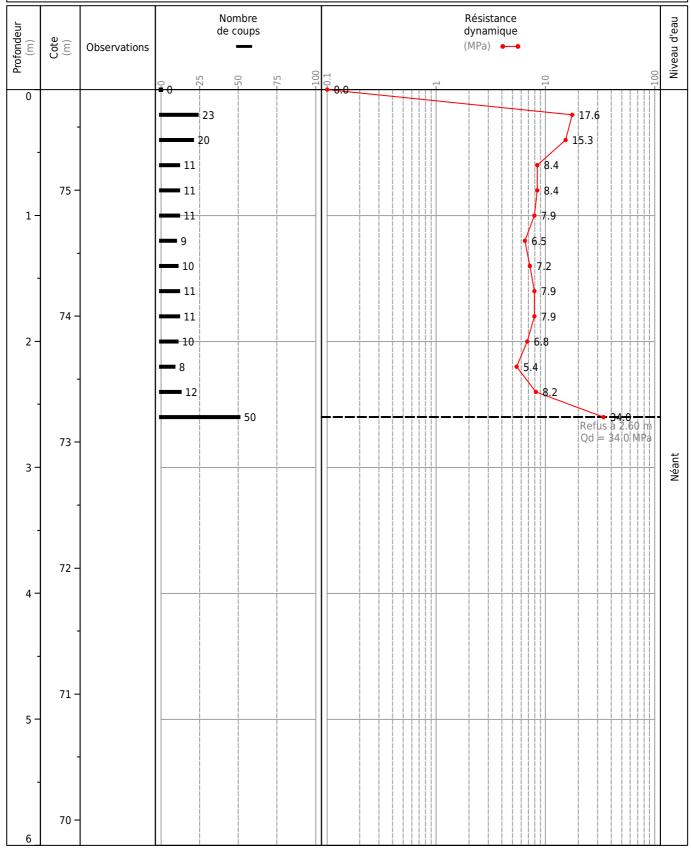
SONDAGE SPD1

Pénétromètre dynamique

Date : 17/05/2023 Profondeur : 0.60 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 75.80 m

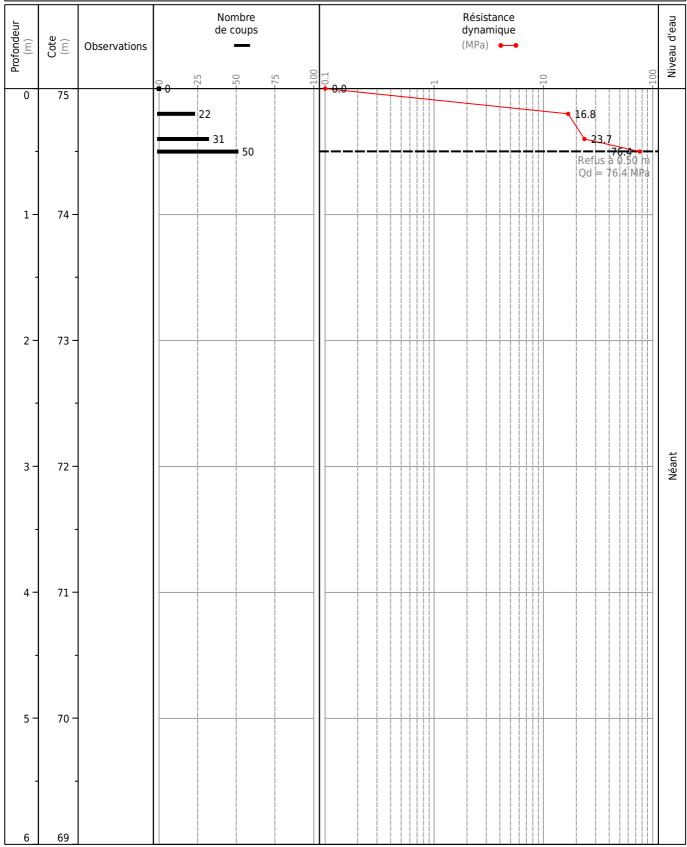
SONDAGE SPD2

Pénétromètre dynamique

Date: 17/05/2023 Profondeur: 2.60 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 75.00 m

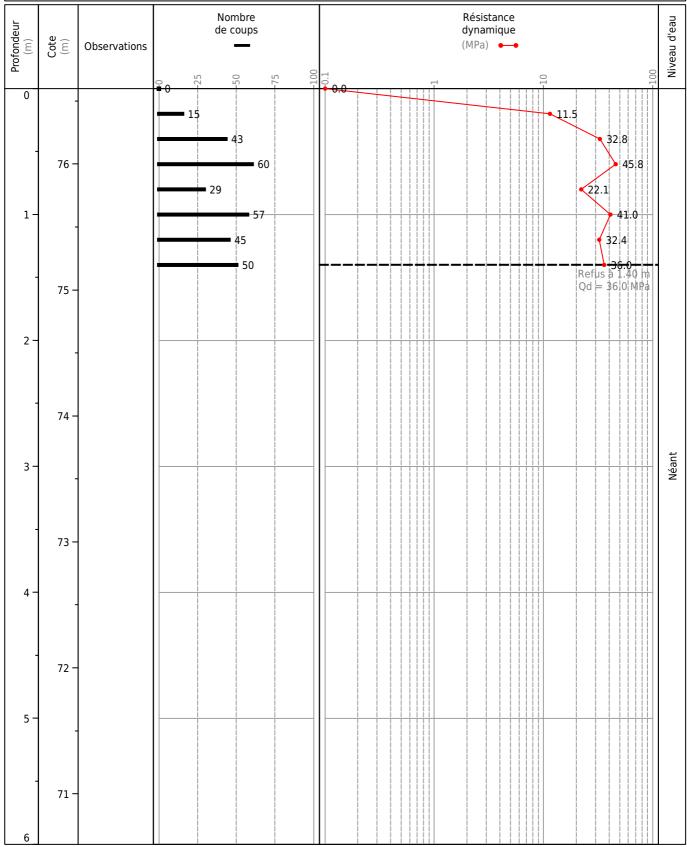
SONDAGE SPD3

Pénétromètre dynamique

Date : 17/05/2023 Profondeur : 0.50 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 76.60 m

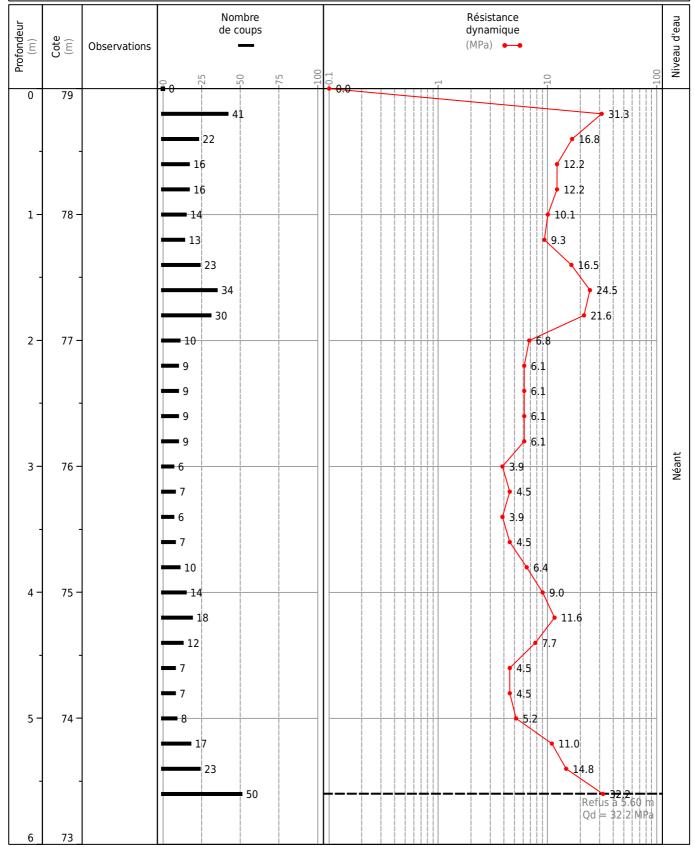
SONDAGE SPD4

Pénétromètre dynamique

Date : 17/05/2023 Profondeur : 1.40 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 79.00 m

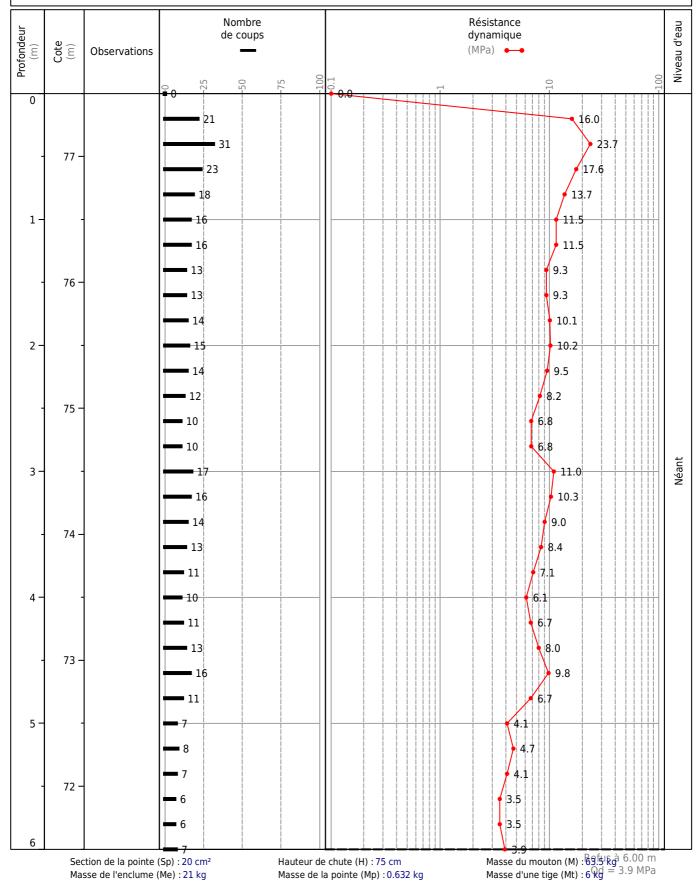
SONDAGE SPD5

Pénétromètre dynamique

Date: 17/05/2023 Profondeur: 5.60 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 77.50 m

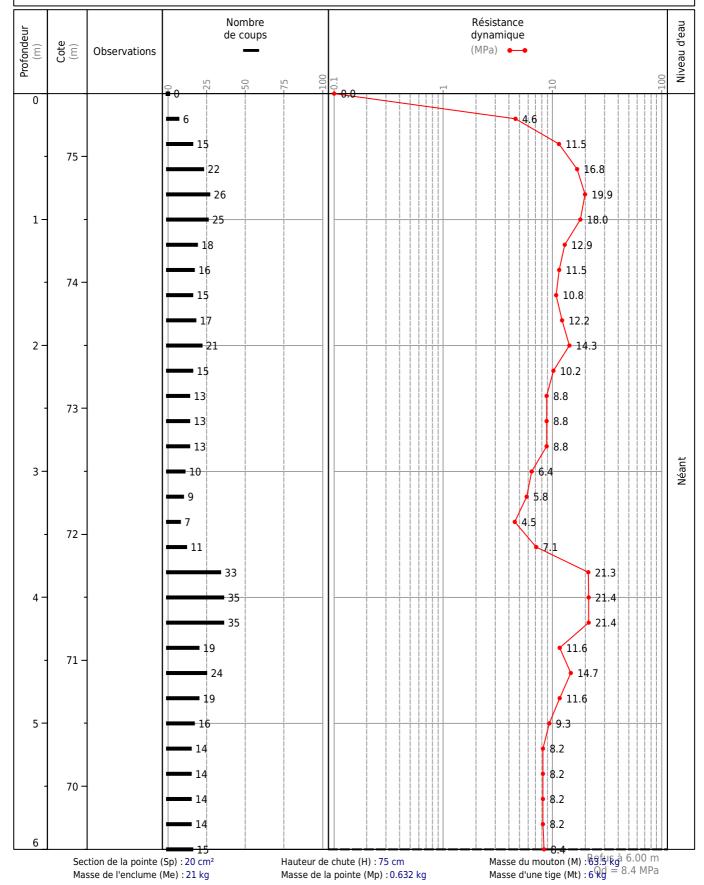
SONDAGE SPD6

Pénétromètre dynamique

Date: 17/05/2023 Profondeur: 6.00 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 75.50 m

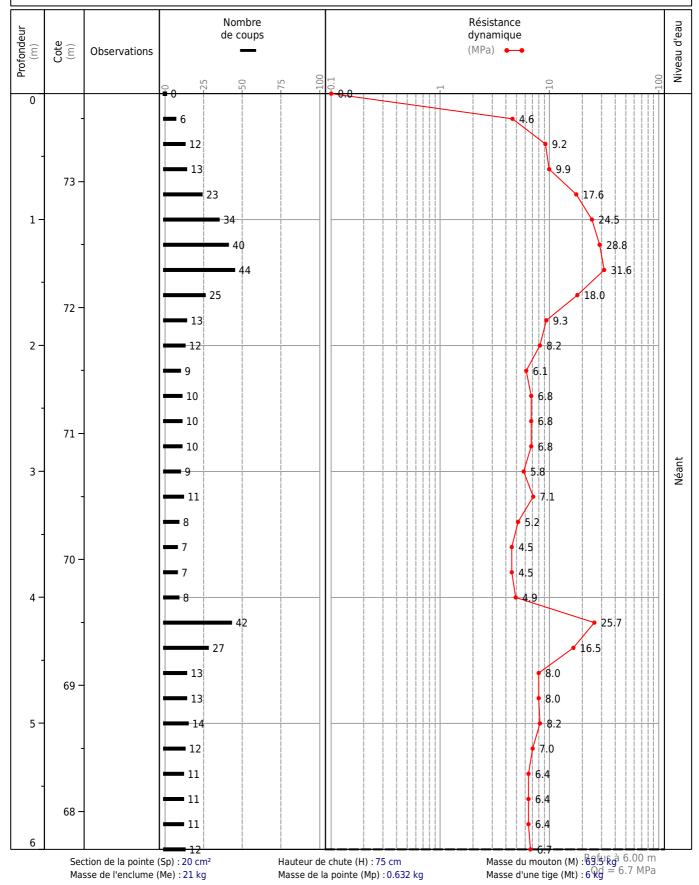
SONDAGE SPD7

Pénétromètre dynamique

Date : 17/05/2023 Profondeur : 6.00 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 73.70 m

SONDAGE SPD8

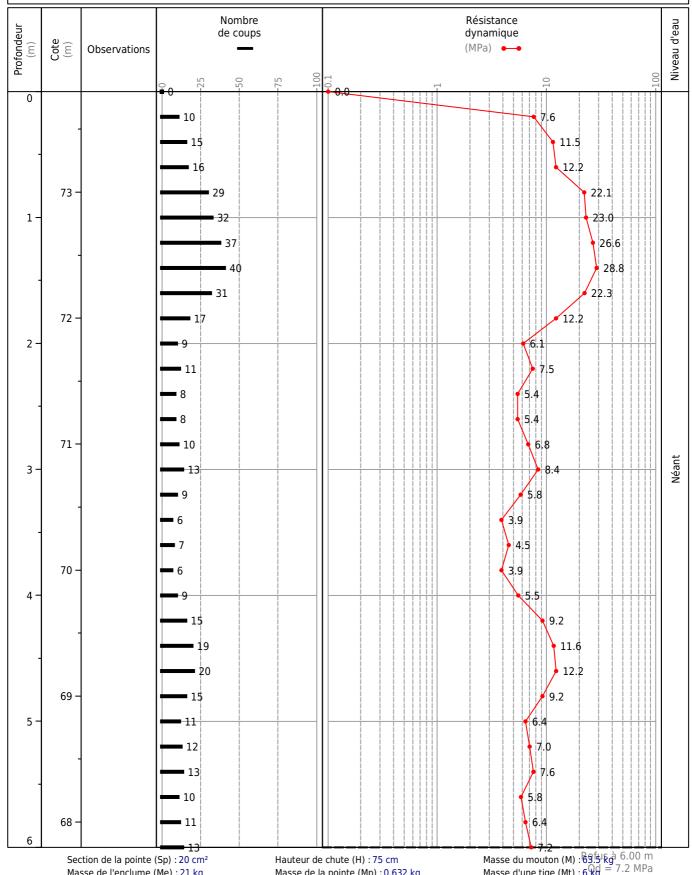
Pénétromètre dynamique

Date : 17/05/2023 Profondeur : 6.00 m

13170 PENNES MIRABEAU

Client: SMII

Dossier: ASE23042


Z(NGF): 73.80 m

SONDAGE SPD9

Pénétromètre dynamique

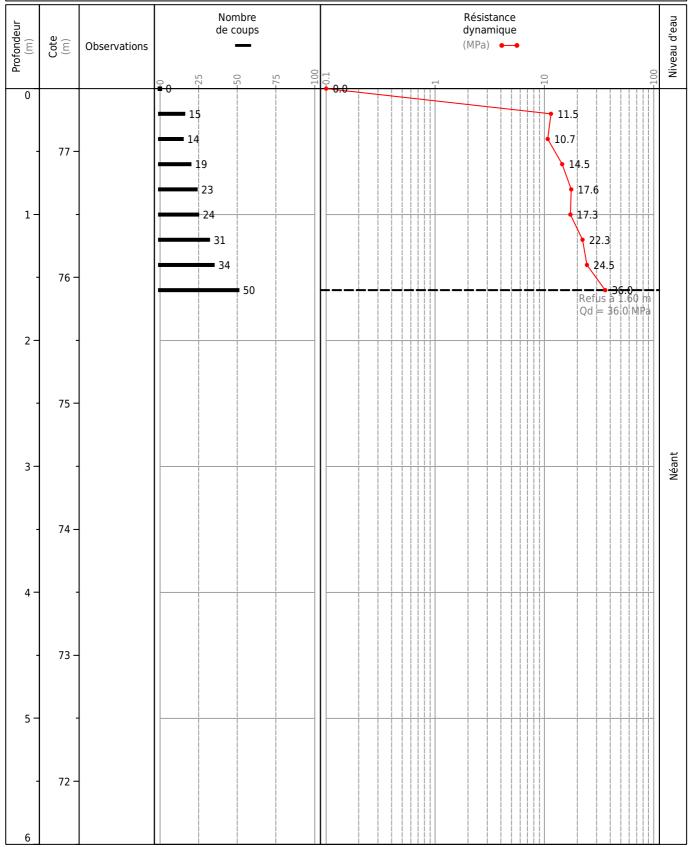
Date: 17/05/2023 Profondeur: 6.00 m

Echelle 1/30

Masse d'une tige (Mt) : 6 kg

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 77.50 m

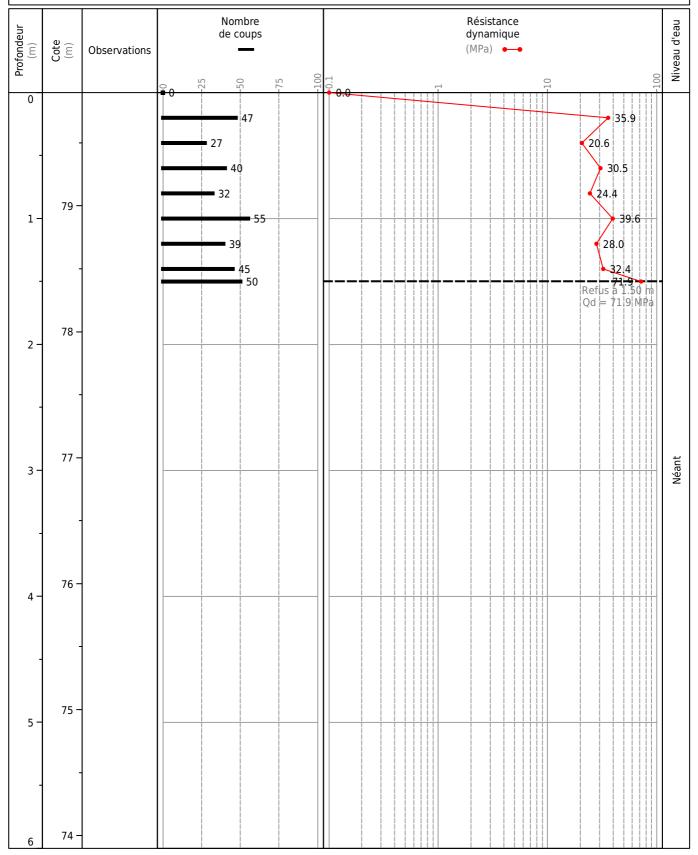
SONDAGE SPD10

Pénétromètre dynamique

Date : 22/05/2023 Profondeur : 1.60 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 79.90 m

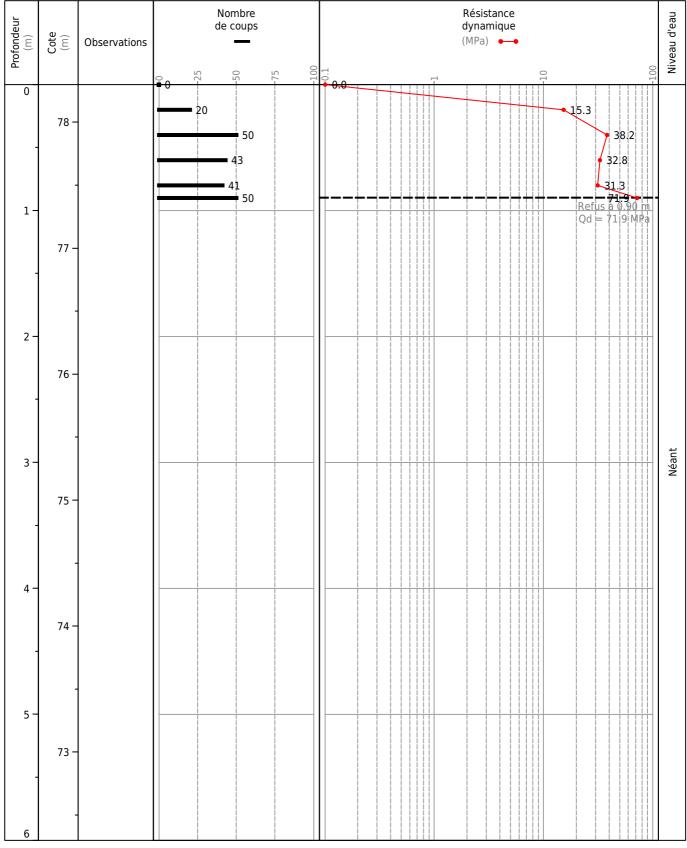
SONDAGE SPD11

Pénétromètre dynamique

Date: 22/05/2023 Profondeur: 1.50 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 78.30 m

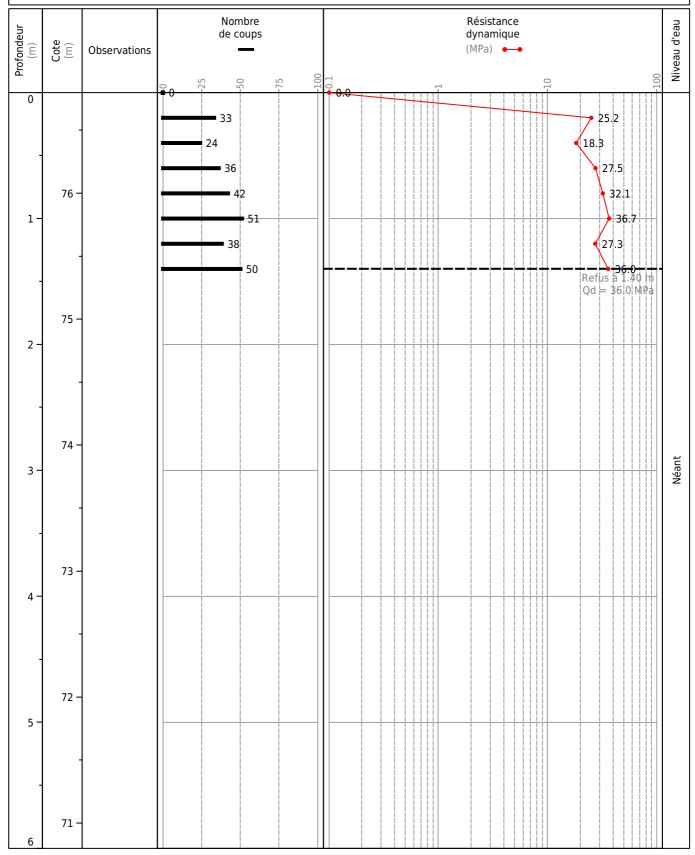
SONDAGE SPD12

Pénétromètre dynamique

Date: 22/05/2023 Profondeur: 0.90 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 76.80 m

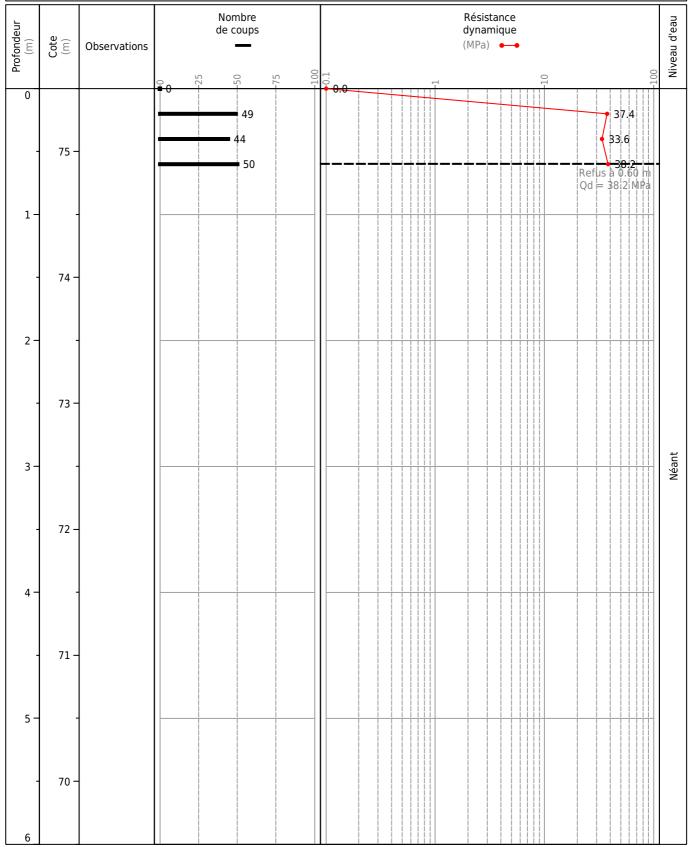
SONDAGE SPD13

Pénétromètre dynamique

Date: 22/05/2023 Profondeur: 1.40 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 75.50 m

SONDAGE SPD14

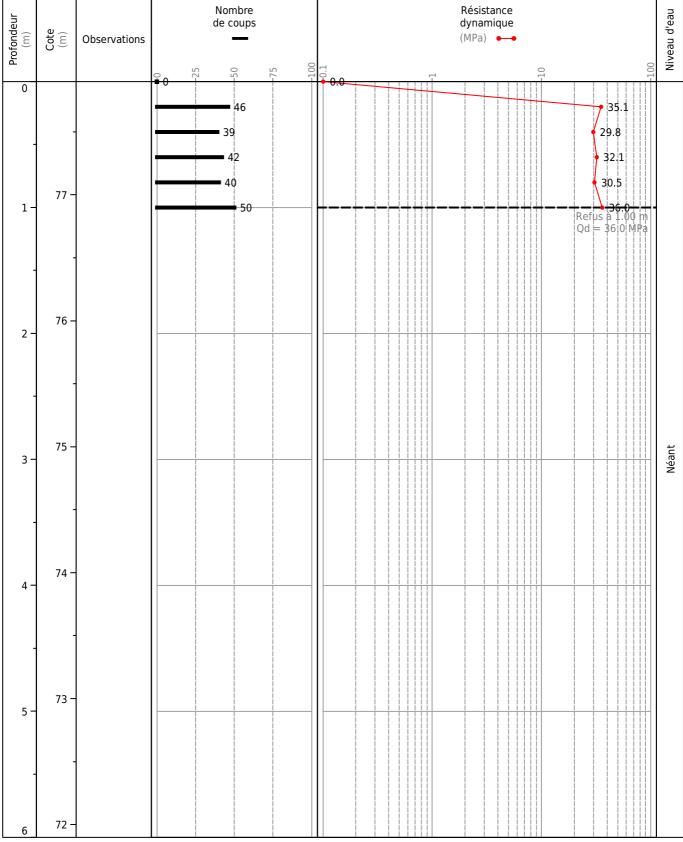
Pénétromètre dynamique

Date : 22/05/2023 Profondeur : 0.60 m

Z(NGF): 77.90 m

Chantier: LES SYBILLES

13170 PENNES MIRABEAU


Client: SMII

Dossier: ASE23042

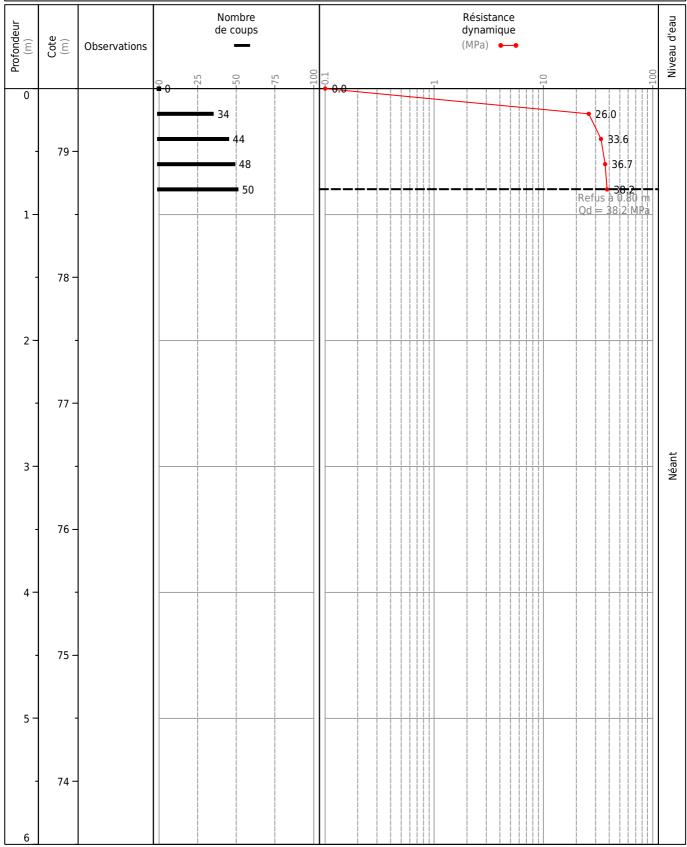
SONDAGE SPD15

Pénétromètre dynamique

Date: 22/05/2023 Profondeur: 1.00 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 79.50 m

SONDAGE SPD16

Pénétromètre dynamique

Date: 22/05/2023 Profondeur: 0.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 70.60 m

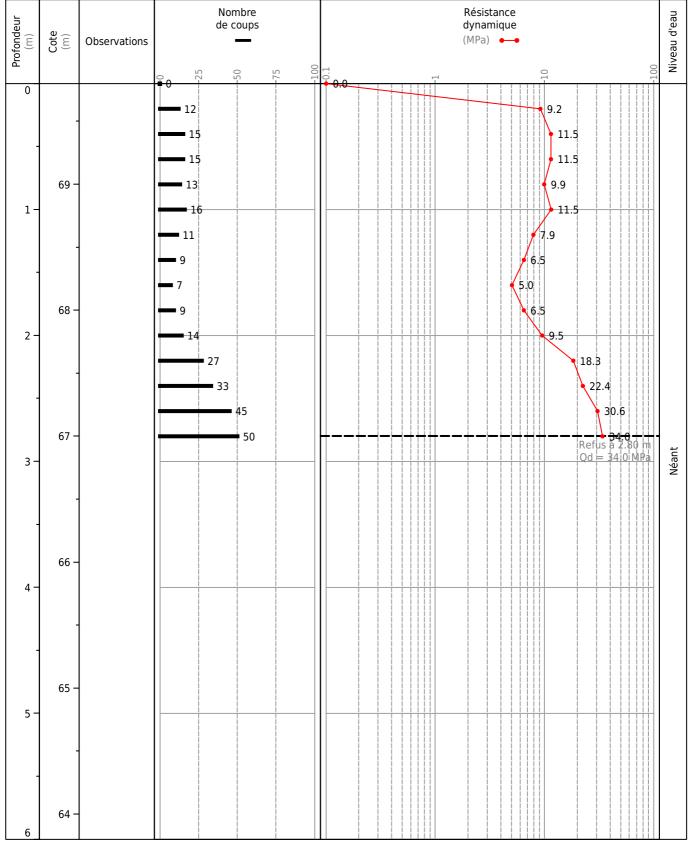
SONDAGE SPD17

Pénétromètre dynamique

Date : 23/05/2023 Profondeur : 2.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 69.80 m

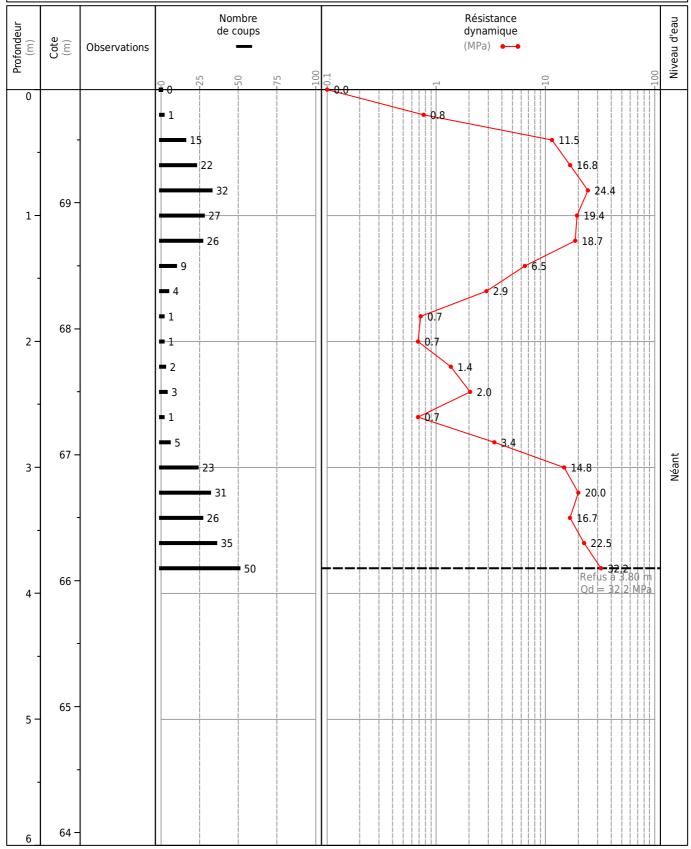
SONDAGE SPD18

Pénétromètre dynamique

Date: 23/05/2023 Profondeur: 2.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 69.90 m

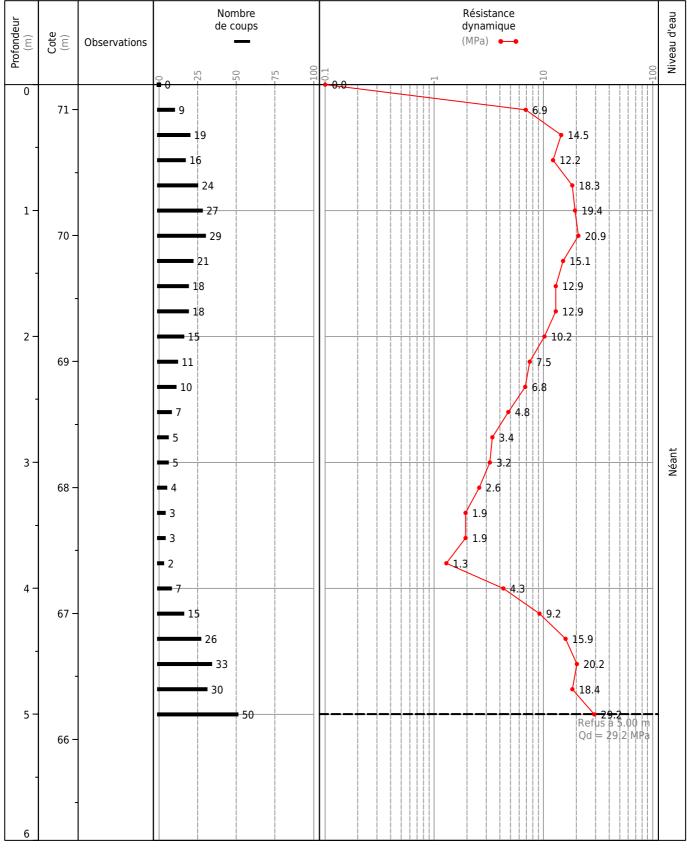
SONDAGE SPD19

Pénétromètre dynamique

Date: 23/05/2023 Profondeur: 3.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 71.20 m

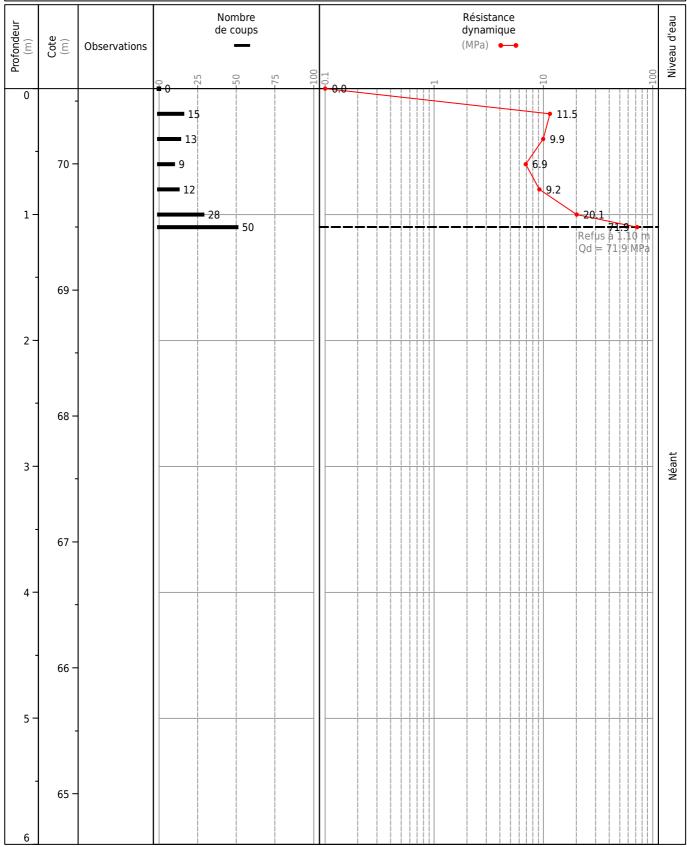
SONDAGE SPD20

Pénétromètre dynamique

Date: 23/05/2023 Profondeur: 5.00 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 70.60 m

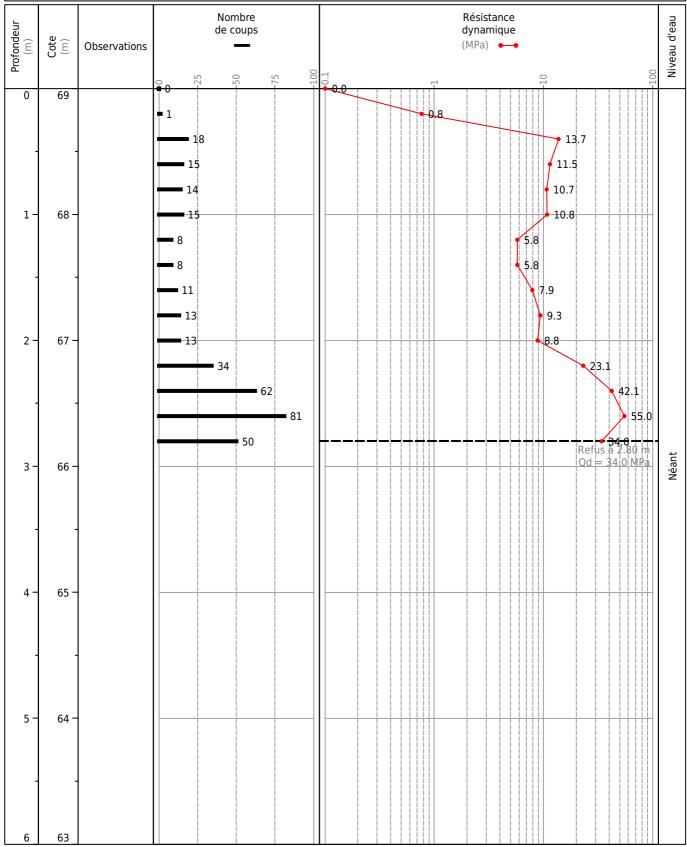
SONDAGE SPD21

Pénétromètre dynamique

Date : 23/05/2023 Profondeur : 1.10 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 69.00 m

SONDAGE SPD22

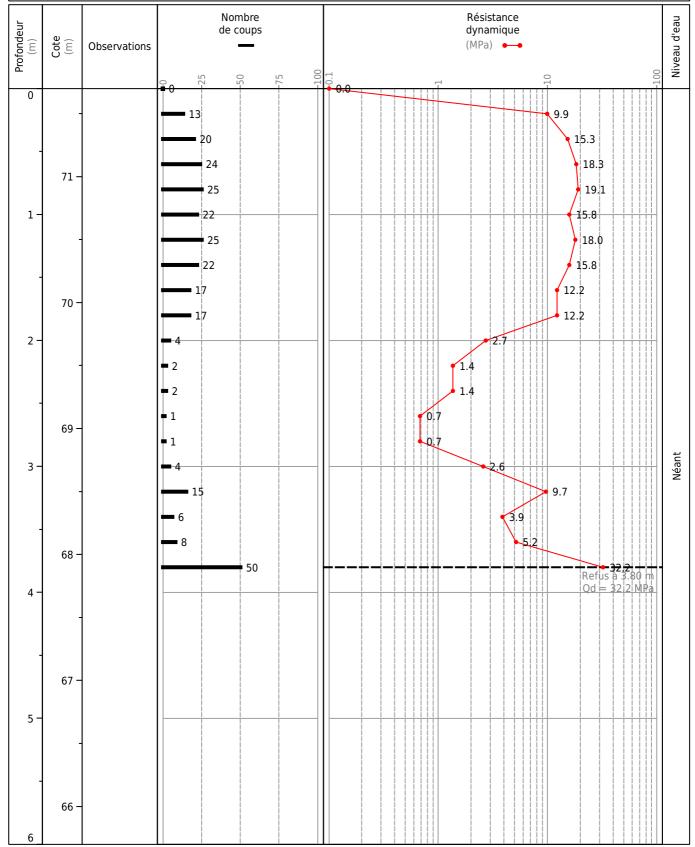
Pénétromètre dynamique

Date: 23/05/2023 Profondeur: 2.80 m

Z(NGF): 71.70 m

Chantier: LES SYBILLES

13170 PENNES MIRABEAU


Client: SMII

Dossier: ASE23042

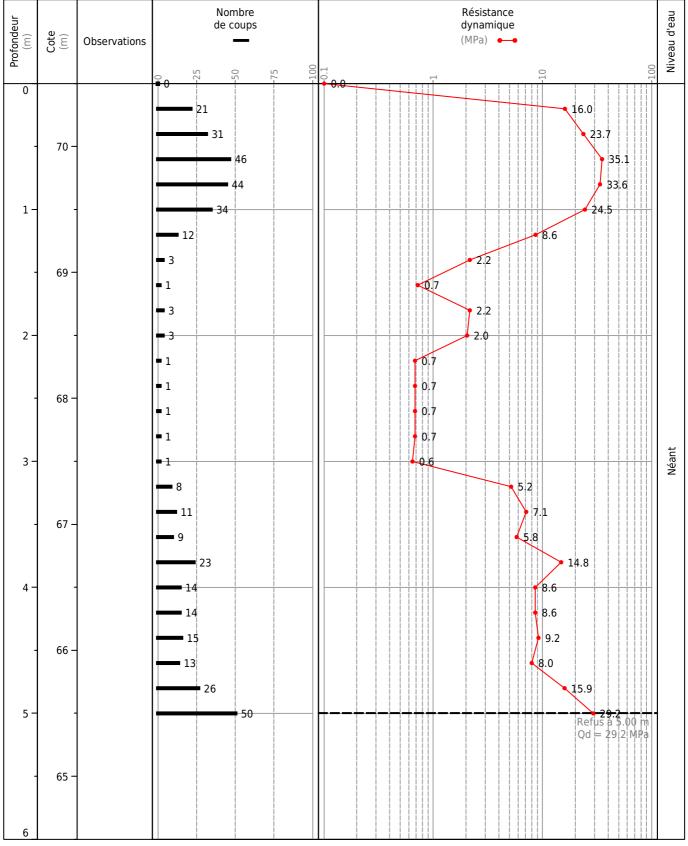
SONDAGE SPD23

Pénétromètre dynamique

Date : 24/05/2023 Profondeur : 3.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 70.50 m

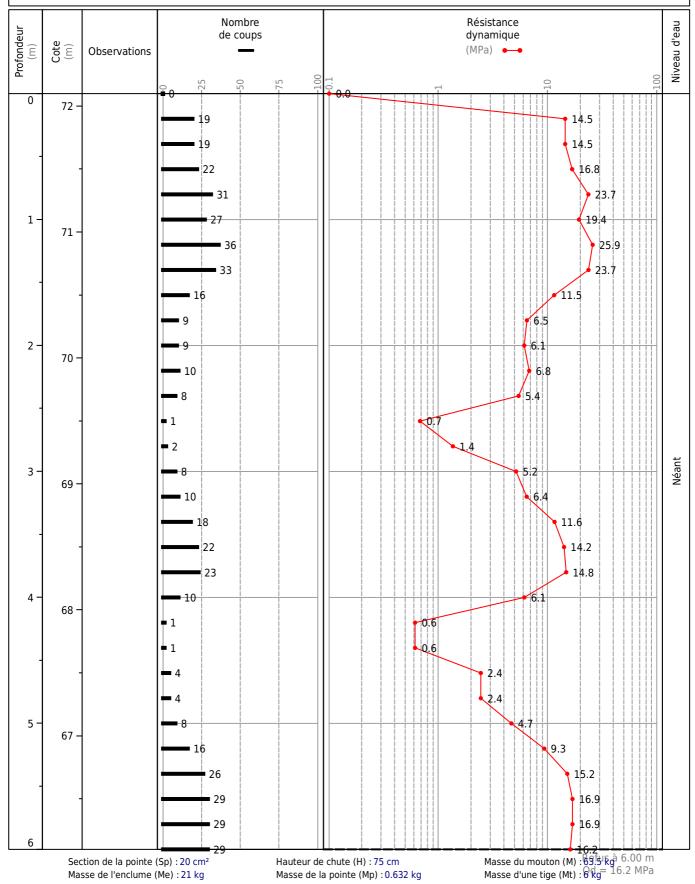
SONDAGE SPD24

Pénétromètre dynamique

Date: 24/05/2023 Profondeur: 5.00 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 72.10 m

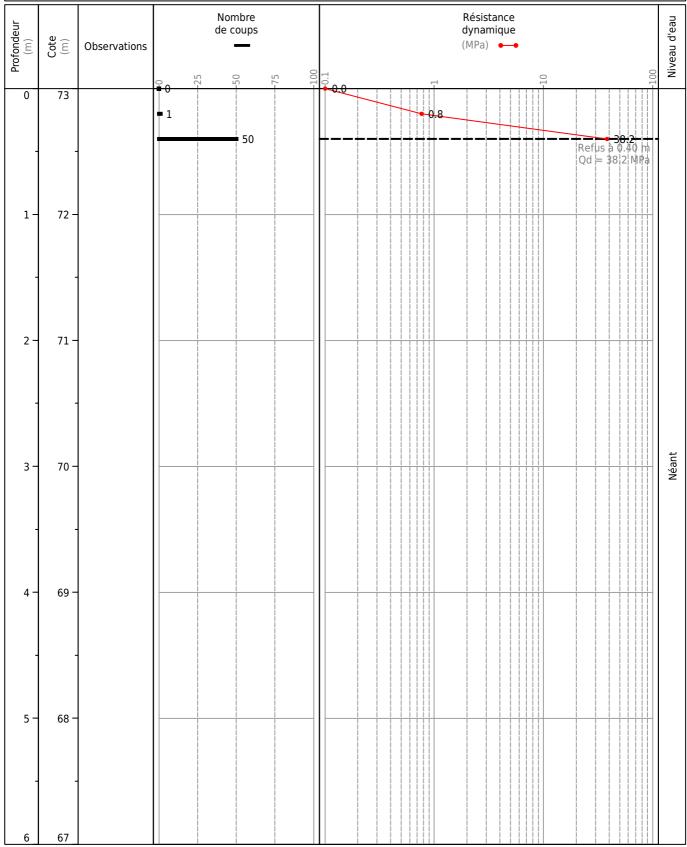
SONDAGE SPD25

Pénétromètre dynamique

Date: 24/05/2023 Profondeur: 6.00 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 73.00 m

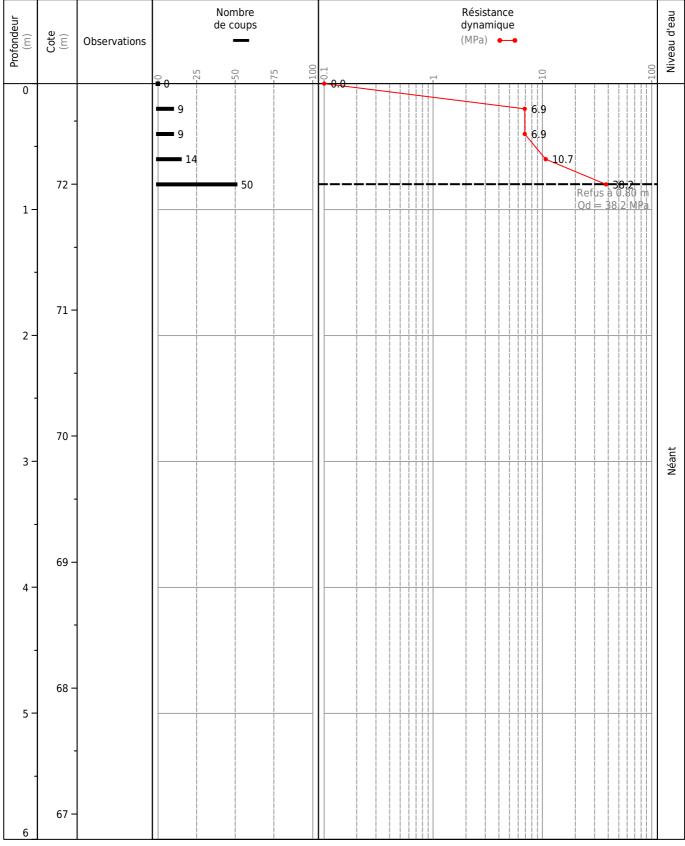
SONDAGE SPD26

Pénétromètre dynamique

Date : 24/05/2023 Profondeur : 0.40 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 72.80 m

SONDAGE SPD27

Pénétromètre dynamique

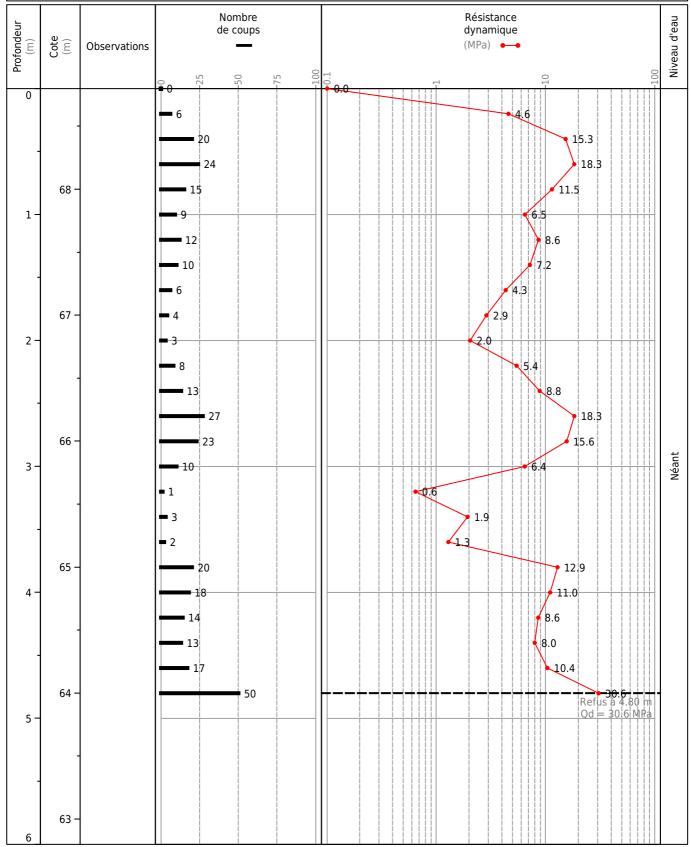
Date: 24/05/2023 Profondeur: 0.80 m

Z(NGF): 68.80 m

Chantier: LES SYBILLES

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

D

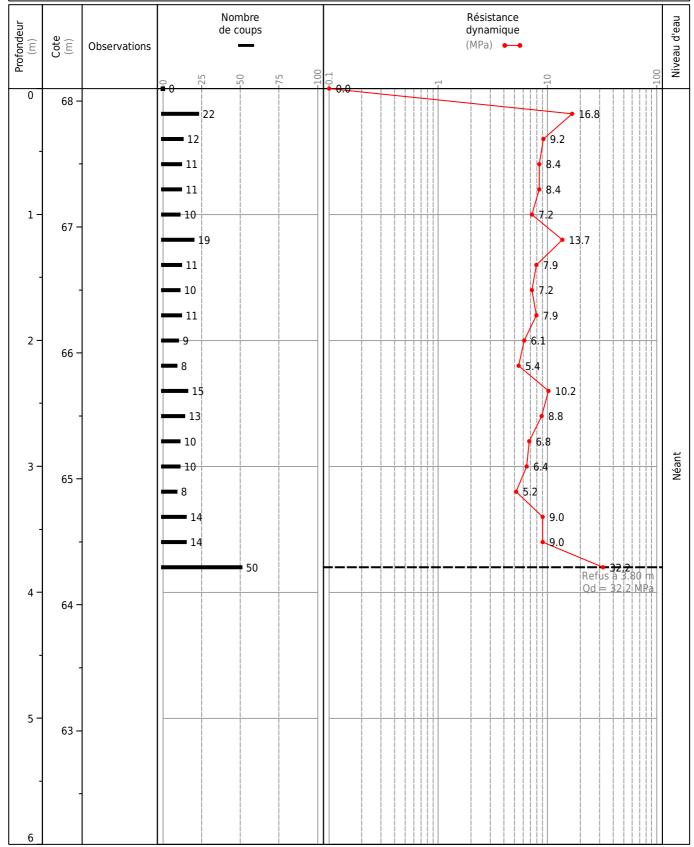
SONDAGE SPD28

Pénétromètre dynamique

Date: 24/05/2023 Profondeur: 4.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 68.10 m

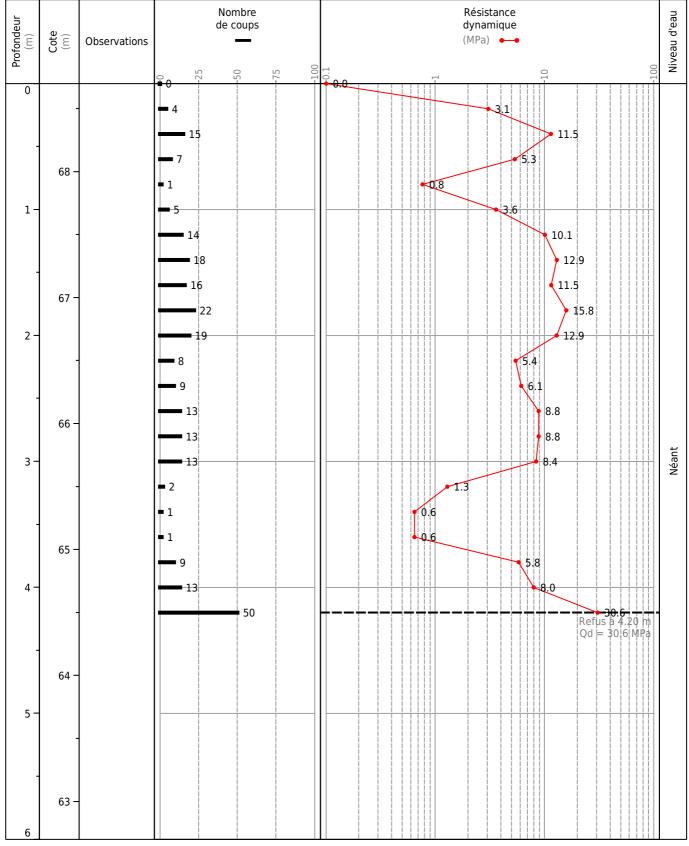
SONDAGE SPD29

Pénétromètre dynamique

Date : 24/05/2023 Profondeur : 3.80 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 68.70 m

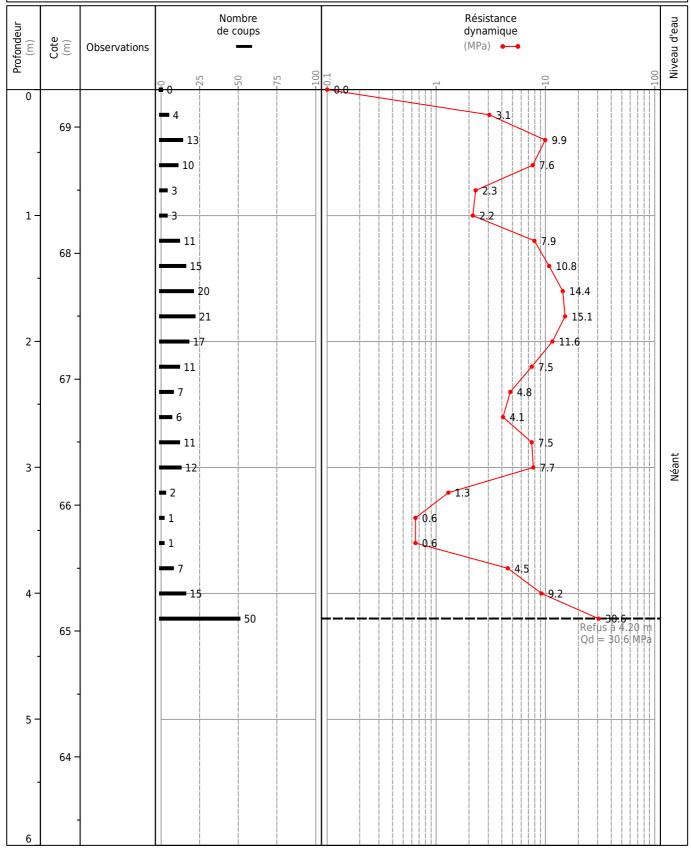
SONDAGE SPD30

Pénétromètre dynamique

Date: 24/05/2023 Profondeur: 4.20 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 69.30 m

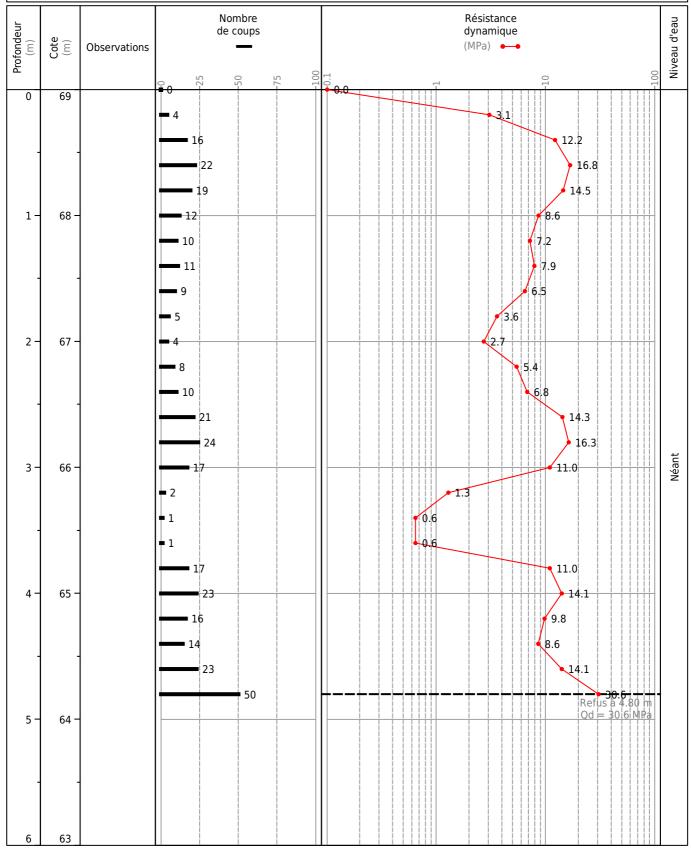
SONDAGE SPD31

Pénétromètre dynamique

Date: 24/05/2023 Profondeur: 4.20 m

13170 PENNES MIRABEAU

Client: SMII


Dossier: ASE23042

Z(NGF): 69.00 m

SONDAGE SPD32

Pénétromètre dynamique

Date: 24/05/2023 Profondeur: 4.80 m

Z: 74.80 m

Chantier: LES SYBILLES

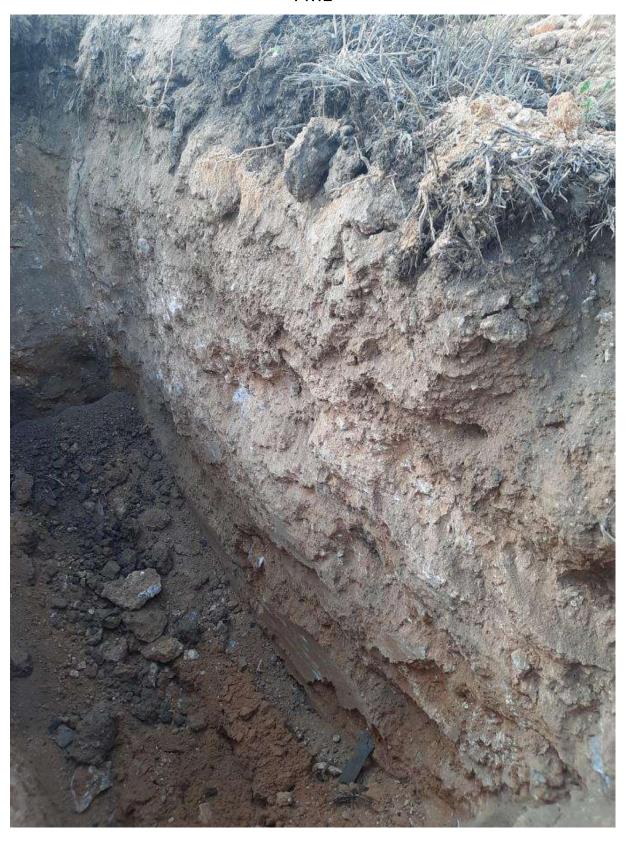
13170 PENNES MIRABEAU

Client : SMII

Dossier: ASE23042

SONDAGE PM1

Pelle mécanique Date : 16/06/2023 Profondeur : 1.30 m


Echelle 1/15

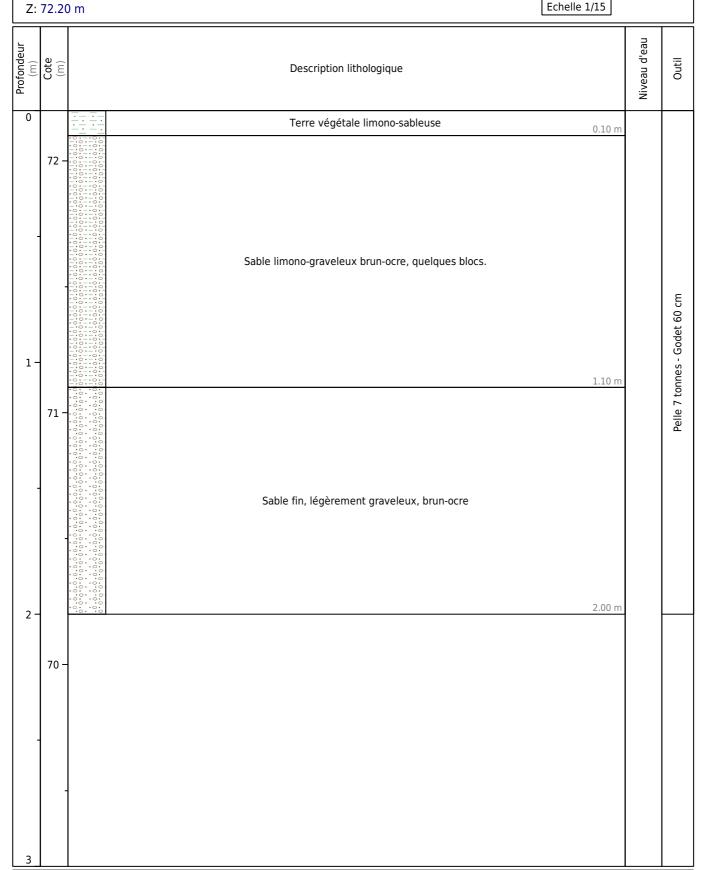
	74.00	The second secon		
Profondeur (m)	Cote (m)	Description lithologique	Niveau d'eau	Outil
0		Terre végétale limono-sableuse		
1-	74 –	Color Colo		Pelle 7 tonnes - Godet 60 cm
	_	Sable limono-graveleux brun-ocre, quelques blocs. Sable limono-graveleux brun-ocre, quelques blocs.		
2 -	73 -			
3	72 -			

Obs.:

PM1

ASE23042 - PROJET SMII - LES SYBILLES - PENNES MIRABEAU (13)

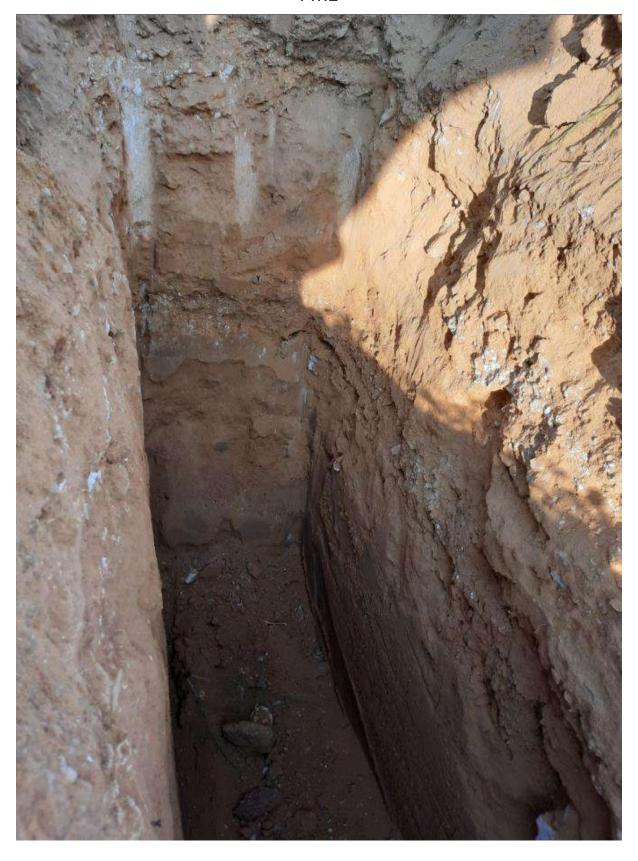
13170 PENNES MIRABEAU


Client: SMII

Dossier: ASE23042

SONDAGE PM2

Pelle mécanique Date: 16/06/2023 Profondeur: 2.00 m


Echelle 1/15

Obs.:

PM2

ASE23042 - PROJET SMII - LES SYBILLES - PENNES MIRABEAU (13)

Z: 67.40 m

Chantier: LES SYBILLES

13170 PENNES MIRABEAU

Client : SMII

Dossier: ASE23042

SONDAGE PM3

Pelle mécanique Date : 16/06/2023 Profondeur : 1.70 m


Echelle 1/15

	Cote (m)	Description lithologique	Niveau d'eau	Outil
0		Terre végétale limono-sableuse		
-	67 -	Sable limono-graveleux brun-ocre, quelques blocs		Pelle 7 tonnes - Godet 60 cm
1-	66 -	1.70 m		Pelle 7 to
2 -	- 65 –			
3	-			

Obs.:

PM3

Z: 75.00 m

Chantier: LES SYBILLES

13170 PENNES MIRABEAU

Client : SMII

Dossier: ASE23042

SONDAGE PM4

Pelle mécanique Date : 16/06/2023 Profondeur : 1.00 m

Echelle 1/15

Profondeur (m)		Description lithologique	Niveau d'eau	Outil
0	75	Terre végétale limono-sableuse		
-	- 74 –	Blocs à matrice sablo-limoneuse beige à nuances rosâtres Blocs à matrice sablo-limoneuse beige à nuances rosâtres		Pelle 7 tonnes - Godet 60 cm
-	-			
3	73 -			

Obs.:

PM4

ASE23042 - PROJET SMII - LES SYBILLES - PENNES MIRABEAU (13)

Z: 80.50 m

Chantier: LES SYBILLES

13170 PENNES MIRABEAU

Client : SMII

Dossier: ASE23042

SONDAGE PM5

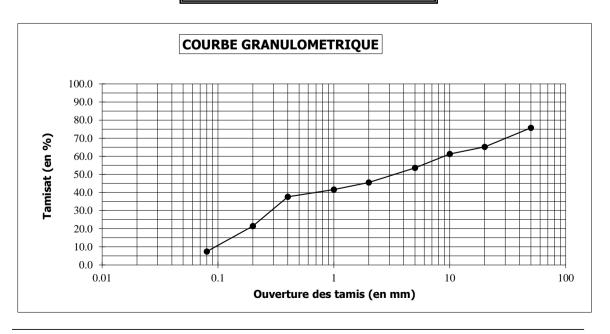
Pelle mécanique Date : 16/06/2023 Profondeur : 1.90 m

Echelle 1/15

Profondeur (m)	Cote (m)	Description lithologique	Niveau d'eau	Outil
0		Terre végétale limono-sableuse		
-	- 80 –	Color Colo		:t 60 cm
1-	- 79 –	Sable limono-graveleux brun-ocre, quelques blocs		Pelle 7 tonnes - Godet 60 cm
2 -	- 78 -			

Obs.:

PM5

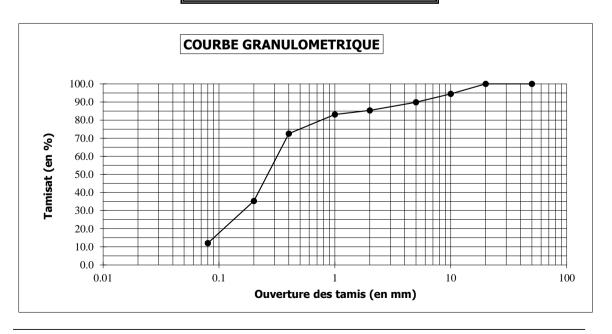


Classification GTR

Date	22/06/2023	Demandeur	RICHET ARCHITECTES
Chantier	SAINT VICTORET (13) - SMII	Dossier	ASE 23042
Implantation	PM1	Profondeur	1,00 à 1,30 m
Description Graves et blocs dans matrice sablo-limoneux marron			

TAMIS (ouverture) en mm	% REFUS	% PASSANT
50	24.3	75.7
20	34.8	65.2
10	38.7	61.3
5	46.4	53.6
2	54.5	45.5
1	58.3	41.7
0.4	62.3	37.7
0.2	78.5	21.5
0.08	92.6	7.4

Teneur en eau naturelle	2.4 %
VBS	0.29
Ip	-
IPI	-
Classification GTR	C_1B_4

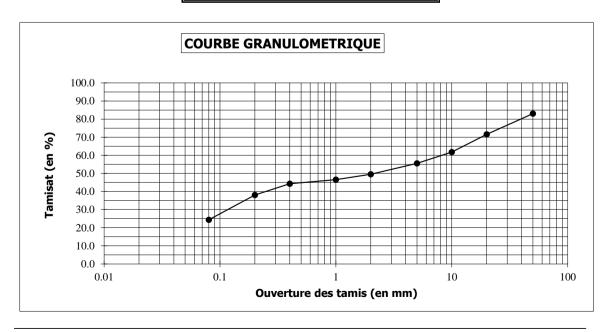


Classification GTR

Date	22/06/2023	Demandeur	RICHET ARCHITECTES
Chantier	SAINT VICTORET (13) - SMII	Dossier	ASE 23042
Implantation	PM2	Profondeur	1,10 à 2,00 m
Description	Sable peu limoneux graveleux marron		

TAMIS (ouverture) en mm	% REFUS	% PASSANT
50	0.0	100.0
20	0.0	100.0
10	5.5	94.5
5	10.1	89.9
2	14.6	85.4
1	16.9	83.1
0.4	27.5	72.5
0.2	64.6	35.4
0.08	88.0	12.0

Teneur en eau naturelle	3.8 %
VBS	0.64
Ip	-
IPI	-
Classification GTR	\mathbf{B}_{2}

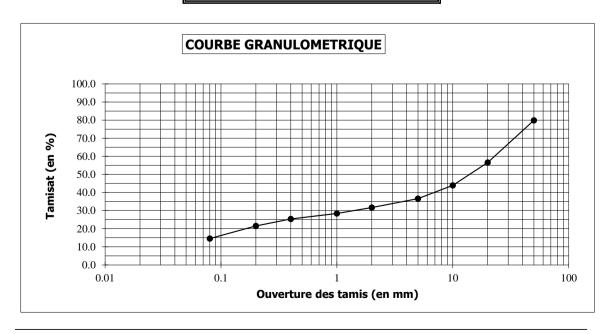


Classification GTR

Date	22/06/2023	Demandeur	RICHET ARCHITECTES
Chantier	SAINT VICTORET (13) - SMII	Dossier	ASE 23042
Implantation	PM3	Profondeur	1,00 à 1,70 m
Description	Sable peu limoneux graveleux et blocs marron		

TAMIS (ouverture) en mm	% REFUS	% PASSANT
50	17.0	83.0
20	28.4	71.6
10	38.2	61.8
5	44.5	55.5
2	50.5	49.5
1	53.4	46.6
0.4	55.7	44.3
0.2	61.9	38.1
0.08	75.6	24.4

Teneur en eau naturelle	3.0 %
VBS	0.86
Ip	-
IPI	-
Classification GTR	C_1B_5

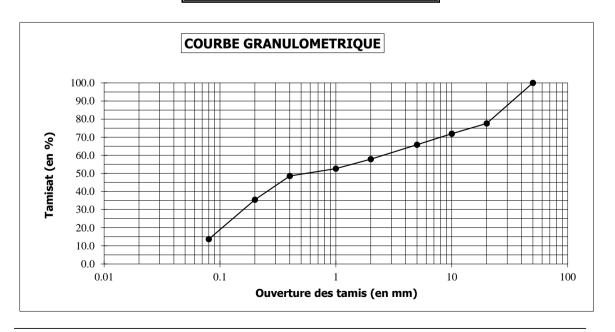


Classification GTR

Date	22/06/2023	Demandeur	RICHET ARCHITECTES
Chantier	SAINT VICTORET (13) - SMII	Dossier	ASE 23042
Implantation	PM4	Profondeur	0,50 à 1,00 m
Description	Sable peu limoneux graveleux et blocs marron		

TAMIS (ouverture) en mm	% REFUS	% PASSANT
50	20.1	79.9
20	43.4	56.6
10	56.0	44.0
5	63.3	36.7
2	68.3	31.7
1	71.6	28.4
0.4	74.6	25.4
0.2	78.4	21.6
0.08	85.4	14.6

Teneur en eau naturelle	3.8 %
VBS	0.35
Ip	-
IPI	-
Classification GTR	C ₁ B ₅



Classification GTR

Date	22/06/2023	Demandeur	RICHET ARCHITECTES
Chantier	SAINT VICTORET (13) - SMII	Dossier	ASE 23042
Implantation	PM5	Profondeur	0,80 à 1,90 m
Description	Sable peu limoneux graveleux marron		

TAMIS (ouverture) en mm	% REFUS	% PASSANT
50	0.0	100.0
20	22.4	77.6
10	28.1	71.9
5	34.1	65.9
2	42.1	57.9
1	47.3	52.7
0.4	51.4	48.6
0.2	64.5	35.5
0.08	86.3	13.7

Teneur en eau naturelle	3.2 %
VBS	0.40
Ip	-
IPI	-
Classification GTR	B ₅

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

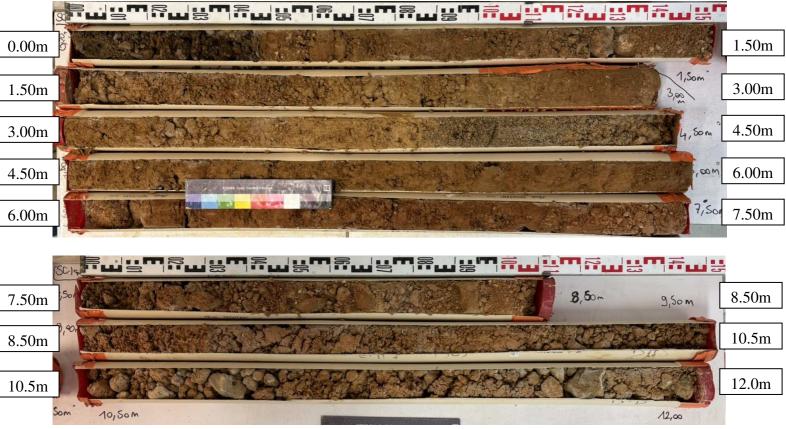
ANNEXE 4 – SONDAGES CAROTTES

- Coupes détaillées des sols,
- Photographies des échantillons intacts (EI) et caisses à carotte (CàC).

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 130/187

		Х		Υ		Systèn	ne de cod	ordonnées	Précision des relevés	Niv	eau d'e	au										
SC1+	.P7	188430		_	7422,66		7 CC44		Centimètre				nt Non mesuré									
501		Élévatio		_	. atteinte		-	Nivellement		ments		☐ En cours de forage ☐ Stabilisé ☐ Non stabilisé ☐ Sec										
Début		+72,87 n	n	Non	renseigné Fin	0,0°	-	NGF Machin	Décimètre			Opérat		NOII Stabili	se 🗆 se	<u> </u>						
31/12/2	024				31/12/202	1		SOCON			_	L.MOU		II								
31/12/2	024				31/12/202	4		3000	MAFOR			1										
Élévation	Prof.	Lithologie					Descrip	tions		Outils	Tubages	Equipements	Echantillons	Taux de récupération	SCR	RQD						
72,87	0		Argi	ile limo	no-graveleu	se marror	n assez mo	olle														
			0,45	i m								00 m										
72,42					lo-graveleus	e marron	compacte			PVC LISSE Ø 52/60 mn	<u>⊞</u> ∑ ∑	100,0 %										
71,87	1	00000										PVCLI										
		0 0 0 0 0	Grav	ve sab	lo-argileuse	marron +/	- humide				1,5 m	1,5 m	1,5 m	1,5 m	1,5 m							
	2											EI N°2	93,3 %									
70,37		00000	2,5 ı	m								□	93,3 %									
	2				leux limoneu	x marron	avec quelo	ques graves (trè				3 m	3 m	3 m	3 m							
	3		3.90										<u>ي</u> ش									
			1 9,5	n									E N N	100,0 %								
68,97	4		Sab	le gros	ssier à petits	cailloutis	grisâtre, as	ssez lâche														
		0 0 0 0 0	4,4 r Grav	n ves av	ec matrice lir	mono-argi	leuse marr	ron beige très hi	umide	4 mn	шш		4,5 m	4,5 m	4,5 m	4,5 m						
68,37			\ <u>4,5 r</u>						/	r Ø 11	Ø 140mm											
	5	400 000 000 000 000 000 000 000 000 000	Limo	on fine	ment sableu	x +/- argil	eux marror	n ocre compact		poinçonneur Ø 114 mn	tubage PW	52/60 mn	EI N°4	100,0 %								
			6 m										6 m	6 m	6 m	6 m						
66,87	7		Argi	ile fine	ment sableu	se marror	n ocre avec	c quelques caillo	outis			PVC CREPINÉ Ø	EI N°5	100,0 %								
65,67	,	0 0 0 0 0	7,2 r	n																		
													7,5 m	7,5 m	7,5 m	7,5 m						
	8												EI N°6	73,3 %								
			Grav	ves et	cailloutis à m	natrice arç	gileuse et s	sableuse					9 m	9 m	9 m	9 m						
	9												EI N°7	100,0 %								
62,87	10																					
soilclou	ıd.tecl	h																				

		X	9.06	Y	7.422.66		ne de coc	ordon	nées	Précision des releve	Niveau d'eau ☐ Néant ☐ Non mesuré											
SC1+	PZ	188430 Élévatio			atteinte		Azimut	Nive	llement	Centimètre Précision des nivell	omonts			cours de forage								
		+72,87 n			renseigné	0,0°	-	NGF		Décimètre	ements		Stabilisé Non stabilisé Sec									
Début		, , , , , , , ,		110	Fin	1 0,0		1101	Machine				Opérat									
31/12/2	024				31/12/2024	1			SOCOM				L.MOU		JI							
Élévation	Prof.	Lithologie					Descript	tions			Outils	Tubages	Equipements	Echantillons	Taux de récupération	SCR	RQD					
62,87	10				cailloutis à m	atrice arg	jileuse et s	ableus	se					EI N°7	100,0 %							
62,37	11	0.000	10,5		tóró : araila +	- araves -	hlocs ave	.c +/- d	e matrice	argilo-graveleuse	 poinçonneur Ø 114 mn	PW Ø 140mm		10,5 m	10,5 m	10,5 m	10,5 m					
			12 m		tere , digite	graves	Siocs ave	c -, a	e mauree	uoɔ̂uiod 12 m	egedut 12 m		∞ N III	100,0 % 12 m	12 m	12 m						
60,87	12		12 111								12 111	12 111	\dashv	12 111	12 111	12 111	12 111					
59,87	13		Calc beig 13 m	е	ris clair assez	85,0 %	100,0 %	9,5 %														
-	14		Calc remp	aire br olissag	réchique gris ge argileux oc	foncé à g cre rouge	gris rosé tre et caillout	ès frac is calc	turé - Lar aires de 13	ge fracture à 1.50 à 14.00m				14 m	14 m	14 m	14 m					
	14		14,8										NÉ Ø 52/60 mn	2,								
58,07					nombreuses es géodes)	fractures	avec recri	stallisa	ation de cr	istaux de calcite			PVC CREPINÉ	CAC N°2	90,0 %	200,0 %	28,5 %					
	15				<i>y</i> ,						16		O O	₫								
57,52			15,35	5 m							CAROTTIER 116		NA NA	16 m	16 m	16 m	16 m					
	16		Calc	aire gr	ris très fractu	ré					ROTATION + EAU + CAF			CAC N°3	95,0 %	300,0 %	24,0 %					
55,12	17		17,75	m										₩ 18 m	18 m	18 m	18 m					
	18		Calc	aire gr	ris légèremer	nt fracture	ś															
	19		22										19,5 m		100,0 %	400,0 %	79,0 %					
52,87	20		20 m	1					20 m	<u> </u>		20 m	20 m	20 m	20 m							
soilclou	ıd.tecl	h																				



SONDAGE CAROTTE: SC1 de 0.00 à 15.70m

De 0.00 à 12.00m : Prélèvement d'échantillons intacts (EI)

De 12.00 à 20.00 m : Prélèvement d'échantillon en caisse à carottes (CaC)

Echantillons intacts:

Echantillons en caisse à carotte :

14.0m

15.0m

18.0m

19.0m

GINGER CEBTP – Agence d'Aix-en-Provence CAI1.M.863-10 MARSEILLE – STATION BUS FRAIS VALLON – G5

15 m 48 VEW. · · · Main

16.0m 17.0m

17.0m

15.0m

16.0m

18.0m

19.0m

20.0m

18m 19 ... 19 m 20m

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

ANNEXE 5 - SONDAGES DESTRUCTIFS - GINGER CEBTP

- Coupes des sondages destructifs,
- Courbes pressiométriques éventuelles (p_{I*} et E_M),
- Diagrammes des enregistrements de paramètres.

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025

7 G	IN	G 3	R
l CF	RTP		

CAI2.0.260

CLDII																	_								
		Х			Υ			Système de d				Niveau d'eau													
SP11	ı		386,79		31374	49,49		RGF93 / CC4	4			☐ Néant ☐ 1	Non mesuré 🔲 En c	ours de f	forage										
3F II		Éléva			Nivelle	ment		Angle	Azimut		of. atteinte	🔲 🗆 Stabilisé 🗆	Non stabilisé 🔲 S	ec											
		+73,7	7 m		NGF			0,0°	-	22,	26 m	7													
Début						Fir	1		-		Machine				Opérateur										
31/12/2	024					31/	12/202	4			SOCOMAFOR				H.CHAYAH										
																		_							
Élévation	Prof.	Lithologie	Descriptio	ns	Outils	Tubages	Prof.	Vitesse d'avancement [m/h]	Pression de pouss [bar] 0 50	ée	[bar]	ession de couple de rotation [bar] 100 200	E _M [MPa]	[1	p _{fM} * MPa]	PLM* [MPa]	E _M /p _{LM} *	15							
73,77	0		Argile limono	-			0	250 500	0 50	10010	25 500	100 200	300 800	0 1 2	3 4 5 6	0 1 2 3 4 5	80 50 100	150							
,			sableuse mai	ron				3																	
72,82	1		0,95 m		1 1		1																		
72,02	'						'						2,8	0,22		0,56	5,0								
	2					E	2	7111 1111																	
						3114								\											
						S.					41111111		20,3	1,	59	2,19	9,3								
	3					Tubage LS Ø114 mm	3																		
						eqn.		4																	
	4		Δlternances (d'argile		_	4						22,2	1,2	0	2,28	9.7								
			Alternances o graveleuse e sablo-gravele	t limon										T T		I									
	5		sablo-gravele marron à mar	ron	1 1		5																		
			ocre		Tricône Ø66mm + eau	6 m							11,3	0,84											
	6				+		6							,,,,,,	'	1,5	T 12								
					6mr								29,4	1,	65	2,47	11,9								
	7				90		7				3	- 5	7 29,4	"	,05	2,4/									
					- ône			3																	
	8				ji		8	2			4				\backslash										
															207		202								
	9						9	4					91,3		> 3,07	> 3,07	● < 29,7								
			10,1 m																						
63,67	10	>>>	10,1111		1		10																		
													430,3		> 4,99	> 4,99	> < 86	٤,٤							
	11						11																		
																	1 + 1 + 1 + 1								
	12						12						379,6		> 4,91 🖣	> 4,91	> < 77,3	3							
			Calcaire +/- fr	acturá																					
	13		Calcaire +/- ir	acture			13																		
													131,3	>	> 4,84 🌞	> 4,84 🌳	< 27,1								
	14						14																		
													518,8		4 07	1 1 1 1 1 1 1 1 1 1	1013								
58,77	15						15						518,8		> 4,97 🛓	> 4,97 🛓	< 104,3								
55,,,,	.						.																		
																		_							
soilclo	ud.tec	า																							

Client: APL

		X		Υ							oordonn	ées							Niveau d'eau ☐ Néant ☐ Non mesuré ☐ En cours de forage																	
SP1	•	1884	386,79	313744	19,49			RGF	93 / 0	CC4	4									léant	t 🔲 N	Non m	nesur	é 🔲	En co	urs de	fora	ige								
SPI	•	Éléva	tion	Nivelle	ment			Ang	le		Azimut		Pi	rof. a	atteint	te			☐ S	tabili	isé 🗌	Nor	ı stab	ilisé [Se	2										
		+73,7	7 m	NGF				0,0°			-		2:	2,26	m																					
Début					Fi									ı	Machi	ine											Op	érate	eur							
31/12/2	2024				31.	/12/202	4							(socc	MAF	OR										H.C	HAY	ΆΗ							
Élévation	Prof.	ie joo Descriptions		Outils	Tubages	Prof.	Vitess	[m/h	1]			[bar]				bar]			rota [b	ation ar]	ple de		E _I	a]			P _{fM} *				p _{Li}	Pa]			/р _{Lм*}	
	_	Li		101	<u> </u>)	250)	500	0	50	100	0		25	50	0	10	00	200	0	30		6000	1 2			5 6) 1			30	50		0 150
58,77	15 16 17 18 19		Calcaire +/- fracturé	Tricône Ø66mm + eau		15 16 17 18 19						A											410	518,8				,97 ` ,95 (4,9 7 4,95		< 104		< 82,9
51,53	21		22,24 m	22 m		21																1														
51,55																																				

soilcloud.tech

76	HI	GE	R
	FRTP)	

CAI2.0.260

<u> </u>																	_
		X			′			Système de		données		Niveau d'eau					_
SP12	•		4352,01		313750			RGF93 / CC4				☐ Néant ☐ No	n mesuré 🔲 En d	cours de forage			
- 12	-		ation		Niveller	nent		Angle	_	mut Prof. a		☐ Stabilisé ☐ 1	Non stabilisé 📙 S	Sec			
		+68,	89 m	1	NGF	1		0,0°	-	18,0 m				T			_
Début						Fin					Machine			Opérateur			_
06/01/2	2025						/01/2025				SOCOMAFOR		T	H.CHAYAH		1	
Élévation	Prof.	Lithologie	Descriptions		Outils	innages ::	Niveau d'eau Prof.	Vitesse d'avance [m/h]	ement 500	Pression de poussée [bar]	Pression d'injection [bar] 0 25 50	Pression de couple de rotation [bar]	[MPa]	p _{fM} * [MPa]	PLM* [MPa]	E _M /p _{LM} *	150
68,89	0		Sable et cailloux beiges 1 m	(0	3				3					
67,89	1					E	1										
	2		Alternances	ISA	-	Tubage LS Ø114mm	2										
	3		d'argile gravelet et limon sablo- graveleux marro à marron ocre	on		ogni	3						99,6	> 2,51	> 2,51	< 15,8	
	4				4,5	5 m	4						47,3	2,30	3,52	13,4	
	5		6 m			_	5										
62,89	6		<u> </u>			5,8	3 m 6						94,4	3,03	4,67	• 20,2	
	7				ean		7						105,5	2,82	4,62	22,8	
	8				+		8										
	9		Marne argileuse beige à rosé, av passages d'argil marneuse,	ec le	Tricône Ø66mm		9						34,2	1,51	2,61	13,1	
	10		graveleuse		Tric		10						17,1	1,28	2,27	7,5	
	11						11						94,3	1,75	3,13	30,2	
	12						12						94,5	1,75	3,13	30,2	
	13		14 m				13						66,1	2,51	3,73	17,7	
54,89	14		Calcaire beige à				14										
53,89	15		gris				15										
soilclou	ud.tec	h															

76	HI	GE	R
	FRTP)	

CAI2.0.260

'	-EB			CAIZ	0.2	00															,	Ciletit. F	4FL
		X			Υ				Système o		données			Niveau d'eau									
SP12	,		352,01		3137				RGF93 / C	C44				☐ Néant ☐ No	on mesuré 🔲 E	n cours	de fora	ge					
3P 12	_	Élév	ation		Nivel	lemer	nt		Angle	Az	imut		atteinte	☐ Stabilisé ☐	Non stabilisé 🗌] Sec							
		+68,	89 m		NGF				0,0°	-		18,0 m	ı	7									
Début							Fin						Machine				Op	érateu	ır				
06/01/	2025						06/01/	/2025					SOCOMAFOR				H.C	CHAYA	Н				
Élévation	Prof.	Lithologie	Descriptio	ns	Outils	Tubages	Niveau d'eau	Prof.	Vitesse d'avai [m/h]		[b	de poussée par] 50 100	Pression d'injection [bar] 0 25 50	Pression de couple de rotation [bar]	[MPa]	6000	PfM [MPa	3]	60 1	рьм* [MPa]	4 5 60	E _M /p _{LM} *	
53,89	15 16 17		Calcaire beig gris	je à	Tricône Ø66mm + eau			15 16 17															
					\18 m/																		
soilclo	ud.tecl	า																					

76	HI	GE	R
	FRTP)	

CAI2.O.260

		V		V			C				Nilinaanaa				
		X	4 2 6 2 0 4	Y	475.04		Système de d				Niveau d'eau				
SP13	3		4 263,91 .·		475,91		RGF93 / CC4				□ Ctabilia (□	Non mesuré 🔲 E	n cours de torage		
	-				llement	į .	Angle	Azimut		of. atteinte	Light Stabilise Light	Non stabilisé 🔲	Sec		
5 (1)		+/0,	58 m	NGF			0,0°	-		45 m			<u> </u>		
Début					Fin					chine			Opérateur		
19/12/2	2024		ı		19/12/	2024			SOC	COMAFOR			L.MOUSSAOUI		
Élévation	Prof.	Lithologie	Descriptions	Outils	Tubages	Prof.	Vitesse d'avancement [m/h]	Pression de pouss [bar]	ée	[bar]	ssion de couple de rotation [bar]	E _M [MPa] 0 300 6	PfM* [MPa]	PLM* [MPa]	E _M /p _{LM} *
70,58	0		Limon argileux marron avec graves			0									
69,58	1		1 m /			1						4,6	> 0,62	> 0,62	• < 7,4
	2					2	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
	3		Argile +/- graveleuse marron		E L	3						12,7	0,62	> 0,92	● < 13,8
	4		graveleuse marron		S Ø114 n	4						14,6	0,63	1,19	12,3
	5				Tubage LS Ø114 mm	5						6,9	0,47	0,87	7 ,9
	6		7,1 m			6							5,47		
63,48	7		Argile marneuse marron compacte	eau		7						19,5	1,61	2,48	7,9
61,58	8		9 m Argile marron molle	Ø66mm +		8						6,3	0,44	0,83	7,6
61,08	10		9,5 m	Tricône Ø	10 m	10									
	11			 		11				311111111		573,5	> 4,90	> 4,90	< 117,1
	12					12						171,2	> 4,88	> 4,88	< 35,1
	13		Calcaire beige à gris			13									
	14					14		1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1				175,9	3,56	5,75	30,6
55,58	15					15						203,2	4,12	> 4,85	< 41,9
soilclo	ud.tec	h													

		X		Υ				Système de d	coordonnées			Niveau d'eau							
CD4	•	1884	263,91	3137	475,91	1		RGF93 / CC4	4			☐ Néant ☐ N	lon mesuré 🔲 🛚	En cou	ırs de forag	e			
SP1	5	Élév	ation	Nive	lemen	it		Angle	Azimut	Pre	of. atteinte	☐ Stabilisé ☐	Non stabilisé 🛚	Sec	:				
		+70,!	58 m	NGF				0,0°	-	18,	,45 m								
Début					Fin					Mad	chine			Opér	ateur				
19/12/2	2024				19/12	/2024				SO	COMAFOR			L.MO	USSAOUI				
Élévation	Prof.	Lithologie	Descriptions	Outils	Tubages	Prof.	Vitess	e d'avancement [m/h] 250 500	Pression de pouss [bar]	sée 100	Pression d'injection [bar] 0 25 50	sion de couple de rotation [bar]	E _M [MPa]	6000	P _{fM} * [MPa]	1 5 6	PLM* [MPa] 0 1 2 3 4 5 6	E _M /p _L r	и* 100 150
55,58	15 16 17	-	Calcaire beige à gris 18,5 m	W Tricône Ø66mm + eau		15 16 17							203,2		4,12	3,84	> 4,85	< 41,	

76	HI	GE	R
	FRTP)	

CAI2.0.260

`		7 1 1													
		X		Υ			coordonnées	S		Niveau d'					
CD4		1884	4 2 9 5 , 7 1	31374	14,50 F	RGF93 / CC	44			☐ Néant	t ☐ Non mesuré ☐	En cours de forage	;		
SP14	ł	Élév	ation	Nivelle	ement A	Angle	Azimut	Prof. atteinte		☐ Stabili	isé 🗌 Non stabilisé [☐ Sec			
		+71,9		NGF		0,0°	-	21,95 m							
Début		7 .,0		1.10.	Fin	<u> </u>		Machine				Opérateur			
30/12/2					30/12/2024			SOCOMAFOR	<u> </u>			L.MOUSSAOUI			
30/12/2	2027				30/12/2024			JOCOWAI ON	·			L.MOOSSACOI			
Élévation	Prof.	Lithologie	Descriptions	Prof.	Vitesse d'avancemen [m/h]	I	n de poussée [bar] 50 1000	Pression d'injection [bar] 0 25 50	Pression de rotat [ba	r]	E _M [MPa] 0 300 600	P _{fM} * [MPa] 0 1 2 3 4 5	PLM* [MPa]	E _M /p _{LM} *	00 150
71,99	0		A	0											
			Argile +/- graveleus marron	e						2					
	1			1	⊒ ₹1 1 1										
											27,5	1,27	94 2,94	9,3	
69,99	2		2 m	2	- 3										
05,55															
	3			3							21,1	1,37	2,18	9,7	
	3			3											
										- 1					
	4			4							13,1	1,60	2,29	5,7	
	5			5	==					<					
										7					
	6		Alternance de	6							4,1	0 ,37	0,67	6,1	
			Alternance de d'argile +/- graveleuse molle e	.											
	7		graveleuse molle e	7	-				1	-111					
	,		marne argileuse + compact marron	'					ŧ		20,2	0,61	2,94	6,9	
	8			8	-										
	0			°								$ \ \ \ $			
									1		22,2	> 1,55	> 1,55	< 14,4	
	9			9	4	_			,						
	10			10	<u> </u>					F	Co	0.45	0,76		
									1		6,8	0,45	0,76	8,9	
	11			11											
					_				`					$+$ λ	
	12		12,5 m	12						3), D *) `Ú	y `ú	Q D*	
59,49		$\times\!\!\!\times\!\!\!\!>$	12,5 111	\dashv										1	
'	13			13											
									-		318,4	> 4,79`	> 4,79`	● < 6	6,4
	14		Calcaire légèremer	nt 14	- F										
	14		fracturé	14								/			
				45							388,1	4,30 🔟	> 4,85	1	80,1
56,99	15			15											
														*D = Essai	i douteux
soilclou	ıd to c	h												, 2 23301	
SOUCIOU	au.tec	11													

56,99 15 16 16 17 17 18 19 19 19 20 21 21 21 21 21 21 21			Х		Υ		Système de	coordonnées			Niveau d'e				
President Pres	CD4	7	1884	295,71	31374	14,50	RGF93 / CC4	4			☐ Néant	□ Non mesuré □ E	n cours de forage		
Debut Fin	3P14	+	Élév	ation	Nivelle	ment	Angle	Azimut	Prof. atteinte		☐ Stabilis	sé 🗌 Non stabilisé 🗌	Sec		
30/12/2024 SOCOMAFOR Limit Descriptions Social Descriptions Description			+71,9	9 m	NGF		0,0°	-	21,95 m						
Descriptions Desc	Début					Fin	-		Machine				Opérateur		
Descriptions Desc	30/12/2	2024				30/12/2024			SOCOMAFOR				L.MOUSSAOUI		
56,99 15 16 16 17 17 18 19 19 19 20 21 21 21 21 21 21 21	Élévation	Prof.	Lithologie	Descriptions	Prof.	[m/h]]	bar]	[bar]	rotat [ba	ion r]	[MPa]	[MPa]	[MPa]	·
21,95 m		15 16 17 18 19 20		fracturé	15 16 17 18 19							388,1 244,1 561,8	4,30 \	> 4,85 > 4,78 > 4,77 > 4,83	< 51,1 < 117,8 • < 90,5

Ginger CEBTP - Agence d'Aix-en-Provence Affaire : LES PENNES MIRABEAU - Projet Cézanne Etude géotechnique de conception G2 – Phase Avant-Projet AVP

ANNEXE 6 – ESSAIS DE PENETRATION STATIQUE – GINGER CEBTP

- · Pénétrogrammes,
- Valeurs de frottements.

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025 Page 144/187

GINGER LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

(CE	3TP			CAI2.O.	260						Clie	nt: Al	$PL \mid$
		Х		Υ		Système	de coordo	nnées	Ni	iveau d'eau				
		188425	55,41		37 367,83	RGF93 /				Néant ☐ Non mesuré ☐ En	cours de for	age		
CPT1	·	Élévatio	n		/ellement	Angle	Azimut	Prof. atteinte	7 🗹	Stabilisé 🗌 Non stabilisé 🗹	Sec	J		
		+74,29		NG	F	0,0°	-	0,64 m	7					
Donnée			Туј		Débu			Fin		Machine	Opérat	teur		
CPT1			CP	TU	20/12	/2024		20/12/2024		CPT (M720)	P.N			
Avant-t	rou				Ydry			Y wet 18,0 kN/m ³		Ywater		а		
-					16,0 kN/m ³			18,0 kN/m ³		Ywater 10,0 kN/m ³		0,8	:1	
		Venues d'eau	an											
6		o d	Niveau d'eau		q _c			f_s		R _f		Ic		
vati	<u></u>	l ine	ean		[MPa]			[MPa]		[%]		IC		
Élévation	Prof.	Š	.≥ Z	0	30		60 0	0,5	1	0 % 5 %	0 1 2	2 3	4	5
74,29	0									_				
							1				7			
			Stabilisé		+4									
			tabi								\			
			0,							2	<u>}</u>			
soilclou	d.te	ch												

	GI	N	GER	LES PENN	IES MI	RABE	AU (13) - PRC	DJET CEZ	ANNE - G2	AVP	Client: A	\PL
	CLD	X		Υ			données	Niveau d'ea				
СРТ	1RIS	1	884 257,76	3137365,04	RGF93	/ CC44		☐ Néant ☐	Non mesuré [En cours de f	orage	
• • •			lévation 74,29 m	Nivellement NGF	Angle 0,0°	Azimut	Prof. atteinte 3,46 m		Non stabilis	é ⊻ Sec		
Donné	ées	<u> </u>	Type	Début	0,0		Fin	Mac	hine	Opérat	eur	
CPT1B			CPTU	20/12/202	24		20/12/2024		(M720)	P.N		
Avant-	trou			Y dry 16,0 kN/m ³			<mark>Y_{wet} 18,0 kN/m³</mark>		Y _{water} 10,0 kN/m ³		0,81	
				10,0 KN/III			10,0 KIN/III		10,0 KIN/III		0,61	
Lo		Niveau d'eau		q _c			fs		R _f		1	
Élévation	Prof.	veau		[MPa]		7]	MPa]	[[%]		l _c	
74,29	O P	Ž	0	30	60 0		0,5 10	%	5 %	0 1 2	3 4	5
74,23	2	3,2 m						MMM of the state o				
soilclo	ud.tech	1										

	G	IN	GIR	LES PEN	NNES I	MIRABE	EAU (13) - P	ROJET CE	ZANNE - G2A	VP	Oli a satu A DI
	CEI										Client: APL
		X 18842	74.26 3.	137313,82	RGF93	e de coordo	onnées	Niveau d'eau	u Non mesuré ☑ En	cours de fora	ne ne
CPT	2	Élévat		ivellement	Angle	Azimut	Prof. atteinte	Stabilisé	☐ Non stabilisé ☐	Sec	ge
		+77,53	m N	GF	0,0°	-	5,62 m				
Donné	ées		Туре	Début			Fin		achine	Opérate	ur
CPT2 Avant-	trou		CPTU	20/12/	2024		20/12/2024	CF	PT (M720)	P.N	a
-	tiou			Y dry 16,0 kN/m ³			Υ _{wet} 18,0 kN/m ³		Ywater 10,0 kN/m ³		0,81
		san					•				
lion		g p n		q _c [MPa]			f _s [MPa]		R _f [%]		lc
Élévation	Prof.	Niveau d'eau									
77,53	0	Z	0	30	60 0		0,5	10%	5 % 0	1 2	3 4 5
	3	3,55 m									
72,53	5	ch				I I					<u> </u>

		STP		CAI2.O							Client: AP
		X	Υ	27.242.02		e de coordo	onnées	Niveau			
PT		1884274, Élévation		37313,82 vellement	RGF93	Azimut	Prof. atteinte	→ □ Nea	nt □ Non mesuré ☑ E bilisé □ Non stabilisé □	en cours de fora 7 Sec	ige
		+77,53 m	NO.		0,0°	-	5,62 m				
onné			Туре	Débu	t		Fin		Machine	Opérate	ur
PT2			CPTU		/2024		20/12/2024		CPT (M720)	P.N	
vant-t	rou			Y _{dry} 16,0 kN/m ³			Y _{wet} 18,0 kN/m ³		Y water 10,0 kN/m ³		0,81
Т		3		16,0 KIN/III			10,0 KIN/III		IO,O KN/III		0,81
Élévation	Prof.	Niveau d'eau o		q _c [MPa] 30	60 0		f _s [MPa] 0,5	10%	R _f [%] 5 %		I _c 3 4
2,53	5										<i></i>

soilcloud.tech

	G	IN	G	-	R	LE	S PEI	NNES	. M	IRABE		3) - PR	OJET (CEZ	ANNE	- G2	AV	 P	
	CEI	ЗТР				СА	12.0.	260			•	•							Cli
		Х			Υ			Systèn	ne d	e coordo	nnées		Niveau d	'eau					
СРТ	2	18843	338,	61	313	37368	,56	RGF93	3 / C	C44			☐ Néan	t 🔲	Non mesu	ré 🔲	En co	ours de	forage
CPI	3	Élévat	tion		Niv	ellem	ent	Angle	Δ	Azimut	Prof. at	teinte	☐ Stabil	isé 🏻	Non stal	bilisé (y S∈	эс	
		+76,80	6 m		NG	F		0,0°			1,33 m								
Donné	es			Type			Début				Fin			Mad	hine			Opé	érateur
CPT3				CPTU	J		20/12/	2024			20/12/2	2024		СРТ	(M720)			P.N	
Avant-	trou					Ydry					Ywet				Ywater				
-						16,0	κN/m ³				18,0 kN	/m ³			10,0 kN/n	n ³			
Élévation	Prof.	Niveau d'eau	0			q _c [MPa]		60 0			f _s [MPa] 0,5	1	0 %		R _f %]	5 %	0	1	I _c
76,86	0								,				man man						

Client: APL

a 0,81

CED			OU		OJET CEZANNE - G2	Client: AF
	Х	Υ		e coordonnées	Niveau d'eau	
PT3BIS	1884339,93		RGF93 / C0		☐ Néant ☐ Non mesuré ☐	En cours de forage
	Lievation	Nivellement		zimut Prof. atteinte	Stabilisé 🗌 Non stabilise	e ⊻ Sec
	+76,86 m	NGF	0,0° -	0,81 m	Maratata	0
nnées T3BIS	Type CPTU	Début 20/12/202	24	Fin 20/12/2024	Machine	Opérateur DN
ant-trou	CPIU		<u> </u>	20/12/2024	CPT (M720)	P.N a
ant-uou		γ _{dry} 16,0 kN/m ³		Y wet 18,0 kN/m ³	Y water 10,0 kN/m ³	a 0,81
	5	10,0 KIN/III		IO,O KIWIII	10,0 KIN/III	0,01
_	d'ea	q _c		fs	R _f	
Elevation Prof.	an e	[MPa]		[MPa]	[%]	I _c
Prof.	Niveau d'eau o	30	60 0	0,5		0 1 2 3 4
86 0	2 0	30	600	0,5	76 5 76	0 1 2 3 4
					Mhad	

	CE	3TP			AI2.O.2							Client:	APL
		X		Υ			e de coordo	onnées	Niveau d				
CPT	4	18843 Élévati		313734		RGF93	_	Prof. atteinte		nt □ Non mesuré □ E lisé □ Non stabilisé ☑		rage	
				Niveller NGF	nent	Angle 0,0°	Azimut	1,54 m		iise 🔲 ivoii stabilise 🗹	Sec		
Donné		+78,91	Type		Début	0,0	-	Fin		Machine	Opérat		
CPT4	es		CPTU		20/12/2	2024		20/12/2024		CPT (M720)	P.N	teur	
Avant-	trou		CFIC			2024				<u>'</u>	F.IN	la	
Avaiit	tiou			Ydry	kN/m ³			γ _{wet} 18,0 kN/m ³		Ywater 10,0 kN/m ³		0,81	
				10,0	10.0/111			10,0 1010		10,0 10,011		0,01	
_		Niveau d'eau		qc				fs		R _f			
atio		an o		[MPa]				[MPa]		[%]		Ic	
Élévation	Prof.	<u>i</u>											
78,91	0		0	30	1 1 1	60 0		0,5	10%	5 % 0) 1 2	3	4
	1	_				\$							

CPT4	1BIS	. —	384364,38	Υ	Système	40.000				
Donnée	4BIS	. —		1 2 4 2 7 2 4 7 4 5			rdonnees	Niveau d'eau ☐ Néant ☐ Non mesur	/ П Б	f
		' lė	évation	3137347,15 Nivellement	RGF93 / Angle	Azimut	Prof. atteinte	Stabilisé Non mesur		torage
			78,91 m	NGF	0.0°	Azimut	1.6 m	_ Stabilise _ Norrstab	ilise 💽 Sec	
	<u> </u>		Type	Début	0,0	-	Fin	Machine	Opérat	tour
			CPTU	20/12/2024	1		20/12/2024	CPT (M720)	P.N	.eui
Avant-tr				Ydry	<u> </u>		Ywet	Ywater	1.14	a
_	100			16,0 kN/m ³		1	rwet 18,0 kN/m ³	10,0 kN/m ³		0,81
		3		10,0 10,011			10,0 10 10	10,0 10,11		0,01
ا ء		d'eau		q_c			fs	Rf		
offic		an o		[MPa]			IPa]	[%]		Ic
Élévation	Prof.	Niveau o								
78,91	0)	30	50 0	C),5 1 () %	5 % 0 1 2	3 4
_	1						M			

(CEE	31P		CA	12.0.	260		EAU (13) -						Clie	nt: Al	PL
		X 18844	14.46	Y 3137429	EO	Système RGF93 /	de coord	lonnées		Niveau d'eau ☑ Néant 🔲		á П гъз	ouro do f	25222		
CPT!	5	Élévat		Nivellem		Angle	Azimut	Prof. atteinte		☑ Neant ☐ ☐ Stabilisé				orage		
		+76,34		NGF		0,0°	-	0,99 m		_						
Donné	es		Тур	e	Déb	ut		Fin			Machine		Opéra	teur		
CPT5			CPT	Ū	20/1	2/2024		20/12/202	24		-		-			
Avant-	trou			γdry				γ _{wet}			Ywater			а		
-		1		16,0	kN/m ³			18,0 kN/m ³			10,0 kN/m	3		0,8	31	
Elévation 76,34	O Prof.	Néant Niveau d'eau	0	qc [MPa]	-	600		fs [MPa]	100	%	Rf [%]	5%0		l _c 2 3	4	E .

CPT5BIS 1884 417,13 3137 426,82 RGF93 / CC44 ✓ Néant		Clie			1	ı d'eaı	Nivea	nnées	e de coord		12.0.26	ΙΥ			CEB	
Flevation Nivellement Angle Azimut Prof. atteinte Stabilisé Non stabilisé Sec	ae	e forac	cours de	mesuré ∏ En d				7111003			426.82			_ -		
Type	3	3	Sec	n stabilisé 🗹 S	☐ Non	bilisé	Sto	Prof. atteinte							bBIS	PI
PT5BIS CPTU 20/12/2024 20/12/2024 CPT (M720) P.N							1	1,2 m	-			NGF	76,34 m	-		
Yary Ywet Ywater 16,0 kN/m³ 16,0 kN/m³ 18,0 kN/m³ 10,0 k		ateur														
16,0 kN/m ³ 18,0 kN/m ³ 10,0			P.N							24	20/12/20	\vdash	CPTU			
USING THE PART OF	a 0,81	a		N/m ³	Ywater 10 ∩ kN			vet O kN/m ³	1		∠NI/m³	Ydry			rou	/ant-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,81			1/111							XIV/III	10,0 K		nee		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ic												an d'e		ation
Negar 1	3 4	2 :	1 2	5 % 0			%	1 C	C	60 0		30)	Nive	Prof	<u>Flev</u>
							+	-		1			V		0	,34
						3	—									
)							
			}				<u>}</u>			5		- ₹				
			4				7			1 2		ļ <u>j</u>				
							5				*			éan		
			3				3]]]		}			z		
			}				}		حبراا							
			{				5		5			\{				
		-	\rightarrow				\rightarrow		3		2				1	
							3		3		\(\bar{\pi}\)				'	

GINGER LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

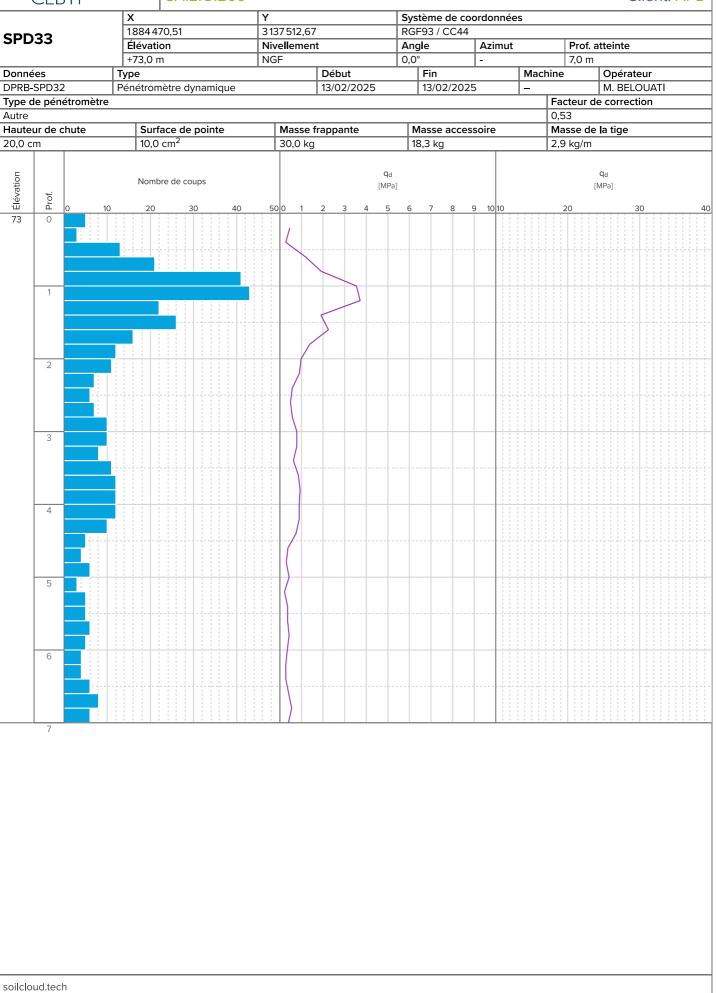
CE	=B	IΡ			CAI2.C).260									(Client	APL
		Κ		Υ		Syste	ème d	le coord	onnées	Niv	/eau d	'eau					
ODT C		88444	3,88	3137	473,35	RGF	93 / C	C44			Néan	t 🔲 Non mes	uré 🔲 I	En cour	s de for	age	
CPT6		Élévatio		Nivel	llement	Angl		Azimut	Prof. atteinte	$\neg \Box$	Stabil	lisé 🗌 Non st	abilisé 🖸	Z Sec			
		⊦74,12 n		NGF		0,0°			0,02 m				_				
Données		, – .	Туре		Déb				Fin			Machine			Opérate	eur	
CPT6			CPTU			2/2024			20/12/2024			CPT (M720)			P.N		
Avant-trou	u				dry				Ywet							а	
-				16	5,0 kN/m ³	В			18,0 kN/m ³			Ywater 10,0 kN/	/m ³			0,81	
		ne															
5		d_e		(q _c				f_s			R_{f}					
atic	.	san		[N	/IPa]				[MPa]			[%]				Ic	
Élévation	Prot.	Niveau d'eau	,		30	60			0,5	10%			5 %	0 1	2	3	4 5
74,12)				30	00	0		0,5	10 /8			3 /6	0 1		3	4 5
soilcloud.t																	

GING3 R	
CEBTP	

soilcloud.tech

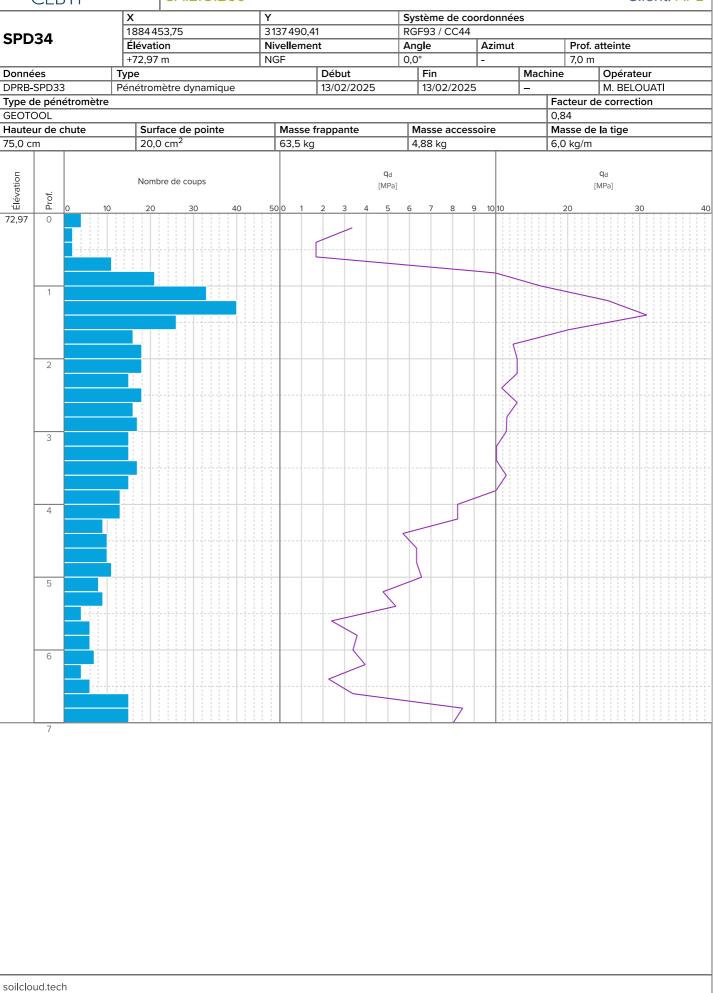
LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

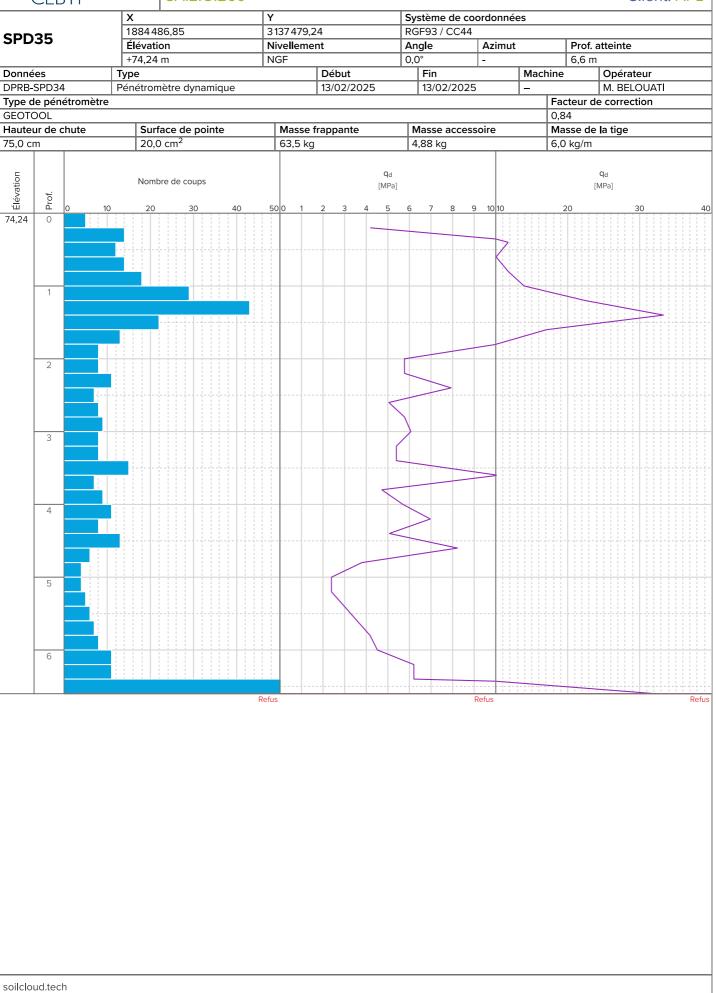
CEBTP)	CAI2.0.260)					Client:	APL	
	Х	Υ	Svetàme	e de coord	onnées	Niveau d'eau				
1	1884444,69	3137469,11	RGF93		0.111003	✓ Néant ☐ Non mesuré ☐ En cours de forage				
					Drof otto:t-	☐ Stabilisé ☐ Non stabilisé ☑ Sec				
L	Élévation	Nivellement	Angle	Azimut	Prof. atteinte	I Stabilise Noti Stabil	136 💌 36	№ 26C		
	+74,12 m	NGF	0,0°	-	0,01 m	1				
Données	Туре	Début		Fi		Machine		Opérateur		
CPT6BIS	CPTU	20/12/2024)/12/2024	CPT (M720)	F	P.N		
Avant-trou		Y _{dry} 16,0 kN/m ³		γ _w	et 0 kN/m ³	Ywater		а		
-		16,0 kN/m ³		18,	0 kN/m ³	Ywater 10,0 kN/m ³		0,81		
au										
d'e 'a'		q _c		f_s		R_f				
atic		[MPa]		[MPa		[%]		Ic		
Élévation Prof. Niveau d'eau						~ -				
74,12 0	0	30 6	0 0	0,5	10	% 5	% O 1	2 3	4 5	


ANNEXE 7 – ESSAIS DE PENETRATION DYNAMIQUE – GINGER CEBTP

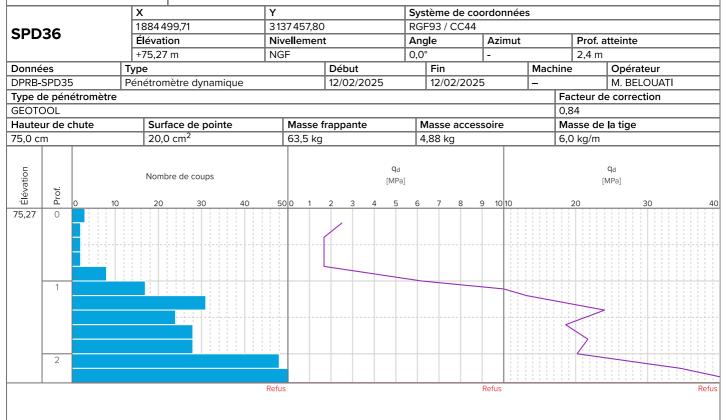
- · Pénétrogrammes,
- · Coupes approximatives des sols éventuelles,
- Valeurs de frottements éventuelles.

Dossier : CAl2.O.260 Rapport 1 Indice 1 du 25/03/2025


GINGER LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

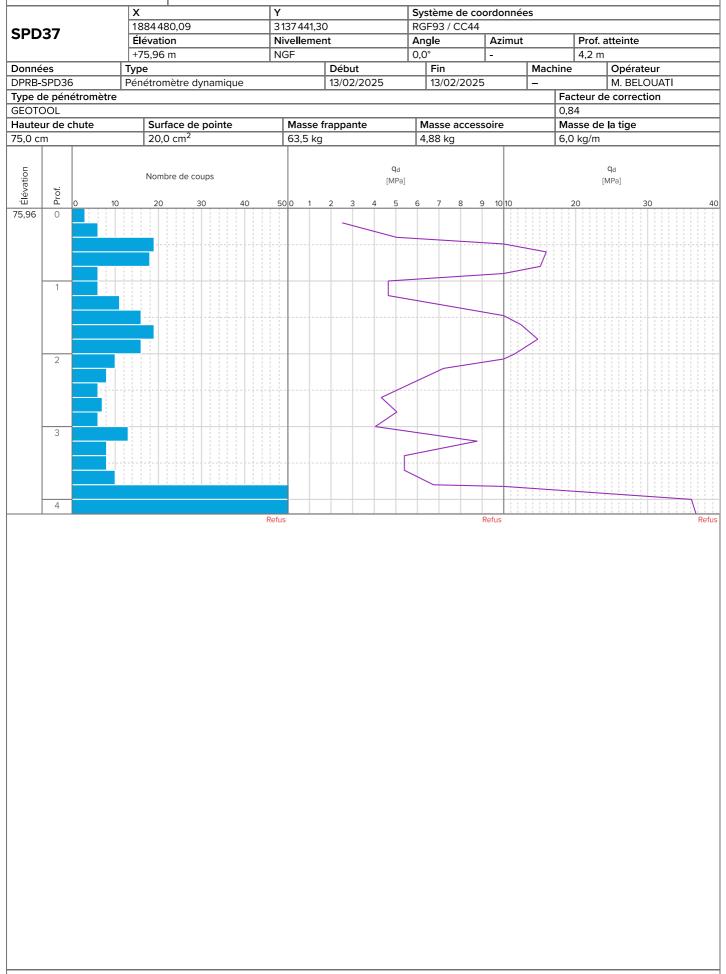

GINGER LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

CAI2.O.260


CEBTP LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

GINGER LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

CAI2.O.260



soilcloud.tech

GINGER LES PENNES MIRABEAU (13) - PROJET CEZANNE - G2AVP

CAI2.O.260

ANNEXE 8 - PROCES VERBAUX DES ESSAIS EN LABORATOIRE

- Essais d'identification et paramètres d'état :
 - teneur en eau,
 - courbe granulométrique,
 - mesure de la VBS,
 - limites d'Atterberg,
 - masse volumique,
- Essais de mécanique des sols :
 - Fragmentabilité sur roche,
 - Dégradabilité sur roche,

COEFFICIENT DE DEGRADABILITÉ DES MATÉRIAUX ROCHEUX NF P 94-067

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier : CAI2.0260.0001 Client /MO : STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0230

Mode de prélévement : Sondage carotté Sondage : SC1 CAC N°2

Prélevé par : GINGER CEBTP Profondeur : 15.00/17.00 m

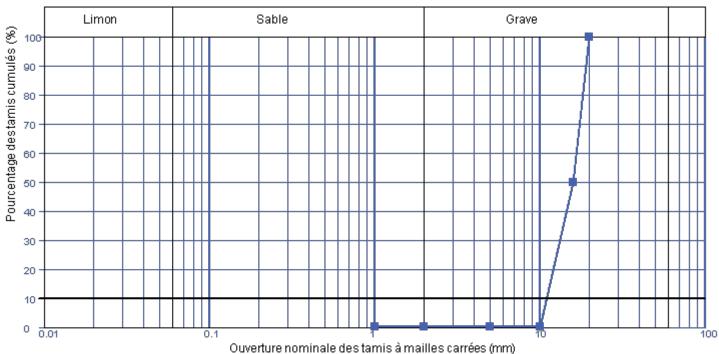
Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison : 28/01/25

Description : Calcaire

Informations sur l'essai


Fraction soumise à l'essai: 10/20 mm Technicien : Cédric LACOSTE

Date essai: 17/02/25

Résultats de l'essai

Analyse granulométrique avant 1er cycle d'immersion/séchage

Analyse granulométrique après 4ième cycle d'immersion/séchage

outertain normain des tanns a maines san ess (min

D10 avant 1er cycle d'immersion/séchage (mm) = 11.2 Coefficient de Dégradabilité - DG = 1.0 D10 après 4ième cycle d'immersion/séchage (mm) = 11.2

Observations:

COEFFICIENT DE FRAGMENTABILITÉ DES MATÉRIAUX ROCHEUX NF P 94-066

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier : CAI2.0260.0001 Client /MO : STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0230

Mode de prélévement : Sondage carotté Sondage : SC1 CAC N°2

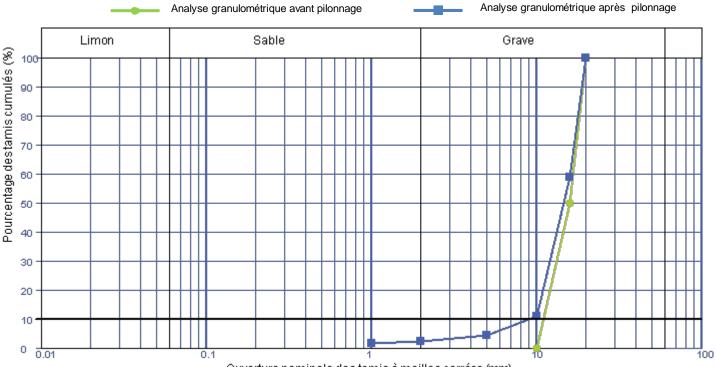
Prélevé par : GINGER CEBTP Profondeur : 15.00/17.00 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison : 28/01/25

Description : Calcaire


Informations sur l'essai

Fraction soumise à l'essai: 10/20 mm Technicien: Cédric LACOSTE

Date essai: 17/02/25

Résultats de l'essai

Conditions d'exécution de la désagrégation du moulage après pilonnage (100 coups): Aisées

Ouverture nominale des tamis à mailles carrées (mm)

D10 avant pilonnage (mm) = 11.2 D10 après pilonnage (mm) = 9.4 Coefficient de Fragmentabilté - FR = 1.2 Classification suivant NF P11-300 =

Observations:

CLASSIFICATION DES MATERIAUX UTILISABLES DANS LA CONSTRUCTION DES REMBLAIS ET DES COUCHES DE FORME D'INFRASTRUCTURES ROUTIERES NF P 11-300

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0222

Mode de prélévement : Sondage carotté Sondage : SC1 El №2

Prélevé par : GINGER CEBTP Profondeur : 2.50/3.90 m

Date prélévement : 31/12/24

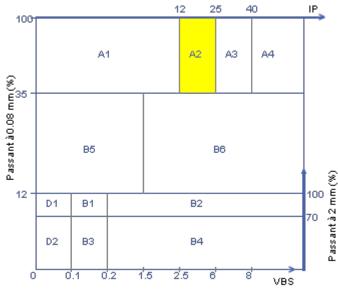
Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

Description: Argile finement sableuse marron orangée à cailloux

Paramètres de nature

Désignation de l'essai	Norme	Résultats	Unité
Dmax	ME selon NFP94-056	50	mm
Passant à 50 mm	ME selon NFP94-056	100.0	%
Passant à 2 mm (fraction 0/50 mm)	ME selon NFP94-056	83.6	%
Passant à 80 µm (fraction 0/50 mm)	ME selon NFP94-056	52.9	%
Passant à 2 μm	ME selon NFP94-057		%
Limite de liquidité - WL	ME selon NFP94-051	33	%
Limite de plasticité - W _P	ME selon NFP94-051	18	%
Indice de plasticité - Ip	WL-WP	15	
VBS	NF P94-068	1.48	g de bleu pour 100


Paramètres d'état hydrique

Désignation de l'essai	Norme	Résultats	Unité
Teneur en eau naturelle - Wn	NF P 94-050	12.2	%
Indice Portant immédiat - IPI	NF P94-078		
Indice de Consistance - Ic	(WL-Wn)/IP		
Wn / W OPN	NF P94-093		

Pour information:

Teneui	en eau Optimale W OPN (%):	
Masse	volumique sèche Optimale ρ OPN (Mg/m3) :	

CLASSIFICATION NF P 11-300: A2 ts (F2 ts)

Observations:

CEDRIC LACOSTE

100_SYN_DON-2.29.01.00~12-;

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

ANALYSE GRANULOMÉTRIQUE Méthode par tamisage à sec après lavage Méthode d'essai selon NF P 94-056 (norme périmée)

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation: LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0222

Mode de prélévement : Sondage carotté Sondage : SC1 El N°2

Prélevé par : GINGER CEBTP Profondeur : 2.50/3.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

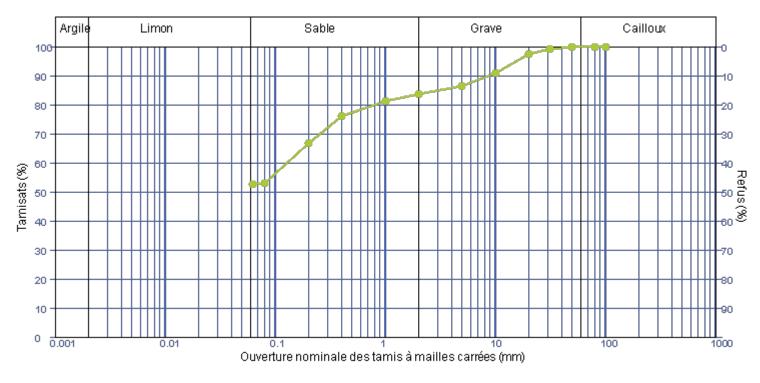
Date de livraison : 28/01/25 dm (mm) : 50 dc (mm) : 20

Description : Argile finement sableuse marron orangée à cailloux

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 18/02/25


Analyse granulométrique sur 0/D mm

Tamis à mailles carrées (mm)	100 mm	80 mm	50 mm	31.5 mm	20 mm	10 mm	5 mm	2 mm	1 mm	400 µm	200 µm	80 µm	63 µm
Passant cumulé (%)	100.0	100.0	100.0	99.2	97.5	91.0	86.4	83.6	81.1	76.0	66.8	52.9	52.5

Facteur d'uniformité Cu = (N.D.)

Facteur de courbure Cc = (N.D.)

Facteur de symétrie Cs = (N.D.)

Observations:

RESPONSABLE DES ESSAIS LOUISA PARES AMORIM

Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériaux rocheux par l'essai à la tâche Méthode d'essai selon NF P 94-068 (norme périmée)

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE :APL DATA CENTER

Chargé d'affaire: Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0222

Mode de prélévement : Sondage carotté Sondage : SC1 El N°2

Prélevé par : GINGER CEBTP Profondeur : 2.50/3.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

dm (mm): 50

Description : Argile finement sableuse marron orangée à cailloux

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 24/02/25

Résultats

VB = 1.72 g de bleu pour 100 g de matériaux sec (Sans correction)

VBs = 1.48 g de bleu pour 100 g de matériaux sec C = 86.4 W (%) : 0.9

C= proportion de la fraction 0/5 mm dans la fraction 0/50 mm (%) - Si dm = 5 mm, alors C=100 %

Observations:

DÉTERMINATION DES LIMITES D'ATTERBERG Limite de liquidité à la coupelle - Limite de plasticité au rouleau Méthode d'essai selon NF P 94-051 (norme périmée)

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier : CAl2.0260.0001 Client /MO :

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon

Mode de prélévement : Sondage carotté Sondage : SC1 El N°2

Prélevé par : GINGER CEBTP Profondeur : 2.50/3.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

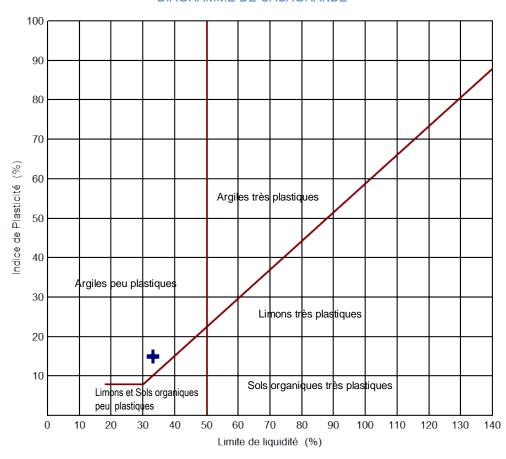
Date de livraison : 28/01/25 dm (mm) : 50 w (%): 12.2

Description: Argile finement sableuse marron orangée à cailloux

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 24/02/25


Résultats de l'essai

Limite de Liquidité W (%)										
Mesure N°	Nb de chocs N	Teneur en eau W (%)								
1	15	34.7								
2	19	33.8								
3	23	33.2								
4	28	32.6								
5	37	32.0								

Limite de Plasticité	W _P (%)
Mesure N°	Teneur en eau W (%)
1	18.4
2	18.4

Limite de liquidité \	N_L (%) = 33
Limite de plasticité \	N_P (%) = 18
Indice de plasticité	I _P = 15
Indice de consistanc	$I_{\rm C} = 1.39$

DIAGRAMME DE CASAGRANDE

Observations : Ic est donnée à titre indicatif, car le passant à 400 μm est inférieur à 80 %

DÉTERMINATION DE LA MASSE VOLUMIQUE DES SOLS FINS Méthode de la trousse coupante, du moule et de l'immersion dans l'eau Méthode d'essai selon NF P 94-053 (norme périmée)

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier : CAI2.0260.0001 Client /MO : STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon 25AIX-0222

Mode de prélévement : Sondage carotté Sondage : SC1 El N°2

Prélevé par : GINGER CEBTP Profondeur : 2.50/3.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

Description : Argile finement sableuse marron orangée à cailloux

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 19/02/25

Méthode utilisée: Immersion dans l'eau Température de salle d'essai (°C): 17.0

Résultats de l'essai

Masse volumique humide $\rho = 1990 \text{ kg/m}3$

Teneur en eau naturelle Wnat = 15.4 %

Masse volumique sèche $\rho d = 1730$ kg/m3

Résultats à titre indicatif

Masse volumique des particules solides de sols PS (kg/m3) = 2650 (estimée)

Masse volumique du sol saturé ρ sat (kg/m3) = 2075

Teneur en eau naturelle de saturation Wsat (%) = 20.1

Porosité n (%) = 34.8

Indice des vides e = 0.534

Degré de saturation Sr(%) = 76.3

Observations:

SolFIN-2.29.01.00~12-2

CLASSIFICATION DES MATERIAUX UTILISABLES DANS LA CONSTRUCTION DES REMBLAIS ET DES COUCHES DE FORME D'INFRASTRUCTURES ROUTIERES NF P 11-300

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0227

Mode de prélévement : Sondage carotté Sondage : SC1 El N°7

Prélevé par : GINGER CEBTP Profondeur : 9.00/10.50 m

Date prélévement : 31/12/24

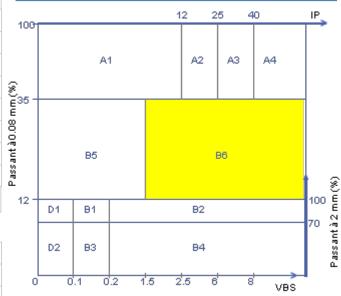
Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

Description: Argile sableuse graveleuse ocre

Paramètres de nature

Désignation de l'essai	Norme	Résultats	Unité
Dmax	ME selon NFP94-056	50	mm
Passant à 50 mm	ME selon NFP94-056	100.0	%
Passant à 2 mm (fraction 0/50 mm)	ME selon NFP94-056	48.2	%
Passant à 80 µm (fraction 0/50 mm)	ME selon NFP94-056	22.6	%
Passant à 2 µm	ME selon NFP94-057		%
Limite de liquidité - WL	ME selon NFP94-051	33	%
Limite de plasticité - W _P	ME selon NFP94-051	18	%
Indice de plasticité - Ip	WL-WP	15	
VBS	NF P94-068	1.06	g de bleu pour 100


Paramètres d'état hydrique

Désignation de l'essai	Norme	Résultats	Unité
Teneur en eau naturelle - Wn	NF P 94-050	10.0	%
Indice Portant immédiat - IPI	NF P94-078		
Indice de Consistance - Ic	(WL-Wn)/IP		
Wn/W OPN	NF P94-093		

Pour information:

Teneur en eau Optimale W OPN (%):	
Masse volumique sèche Optimale ρ OPN (Mg/m3) :	

CLASSIFICATION NF P 11-300: B6 (I2)

Observations:

CEDRIC LACOSTE

100_SYN_DON-2.29.01.00~12-;

GINGER CEBTP

ANALYSE GRANULOMÉTRIQUE Méthode par tamisage à sec après lavage Méthode d'essai selon NF P 94-056 (norme périmée)

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation: LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0227

Mode de prélévement : Sondage carotté Sondage : SC1 El N°7

Prélevé par : GINGER CEBTP Profondeur : 9.00/10.50 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

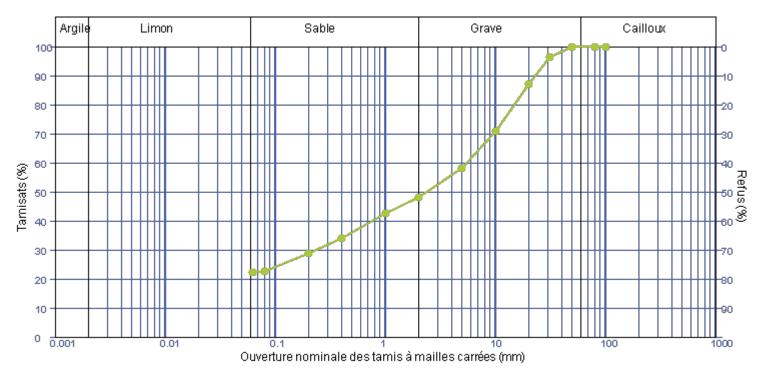
dm (mm): 50 dc (mm): 20

Description: Argile sableuse graveleuse ocre

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 18/02/25


Analyse granulométrique sur 0/D mm

Tamis à mailles	100	80	50	31.5	20	10	5	2	1	400	200	80	63
carrées (mm)	mm	mm	mm	mm	mm	mm	mm	mm	mm	μm	μm	μm	μm
Passant cumulé (%)	100.0	100.0	100.0	96.2	87.1	70.9	58.2	48.2	42.6	34.1	28.8	22.6	22.1

Facteur d'uniformité Cu = (N.D.)

Facteur de courbure Cc = (N.D.)

Facteur de symétrie Cs = (N.D.)

Observations:

RESPONSABLE DES ESSAIS LOUISA PARES AMORIM

Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériaux rocheux par l'essai à la tâche Méthode d'essai selon NF P 94-068 (norme périmée)

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE :APL DATA CENTER

Chargé d'affaire: Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0227

Mode de prélévement : Sondage carotté Sondage : SC1 El N°7

Prélevé par : GINGER CEBTP Profondeur : 9.00/10.50 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

dm (mm): 50

Description: Argile sableuse graveleuse ocre

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 20/02/25

Résultats

VB = 1.82 g de bleu pour 100 g de matériaux sec (Sans correction)

VBs = 1.06 g de bleu pour 100 g de matériaux sec C = 58.2 W (%): 0.7

C= proportion de la fraction 0/5 mm dans la fraction 0/50 mm (%) - Si dm = 5 mm, alors C=100 %

Observations:

DÉTERMINATION DES LIMITES D'ATTERBERG Limite de liquidité à la coupelle - Limite de plasticité au rouleau Méthode d'essai selon NF P 94-051 (norme périmée)

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier : CAl2.0260.0001 Client /MO :

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon

Mode de prélévement : Sondage carotté Sondage : SC1 El N°7

Prélevé par : GINGER CEBTP Profondeur : 9.00/10.50 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

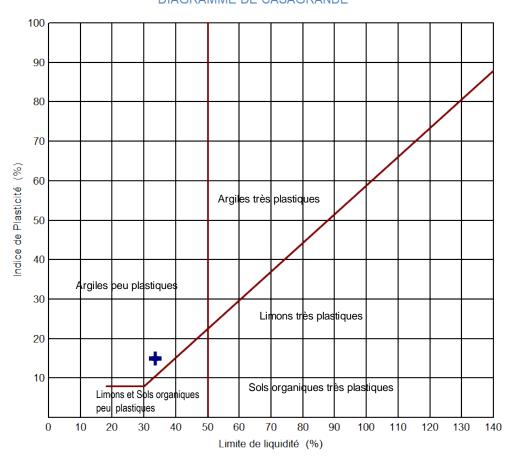
Date de livraison : 28/01/25 dm (mm) : 50 w (%): 10.0

Description: Argile sableuse graveleuse ocre

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 24/02/25


Résultats de l'essai

Limite de Liquidité W _L (%)							
Mesure N°	Nb de chocs N	Teneur en eau W (%)					
1	16	34.8					
2	20	34.2					
3	26	33.0					
4	30	32.7					
5	39	32.3					

Limite de Plasticité W P (%)						
Mesure N°	Teneur en eau W (%)					
1	18.6					
2	18.3					

Limite de liquidité	W _L ((%) =	33
Limite de plasticité	W_{P}	(%) =	: 18
Indice de plasticité		I _P =	: 15
Indice de consistan	се	I _C =	= 1.53

DIAGRAMME DE CASAGRANDE

Observations : Ic est donnée à titre indicatif, car le passant à 400 μm est inférieur à 80 %

DÉTERMINATION DE LA MASSE VOLUMIQUE DES SOLS FINS Méthode de la trousse coupante, du moule et de l'immersion dans l'eau Méthode d'essai selon NF P 94-053 (norme périmée)

GINGER CEBTP

1030 rue JRGG de la lauziere Les Milles 13290 AIX EN PROVENCE

Informations générales

N° dossier : CAI2.0260.0001 Client /MO : STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon 25AIX-0227

Mode de prélévement : Sondage carotté Sondage : SC1 El N°7

Prélevé par : GINGER CEBTP Profondeur : 9.00/10.50 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

Description: Argile sableuse graveleuse ocre

Informations sur l'essai

Mode de séchage : Etuvage Technicien : Cédric LACOSTE

Température : 105°C Date essai : 18/02/25

Méthode utilisée: Immersion dans l'eau Température de salle d'essai (°C): 17.0

Résultats de l'essai

Masse volumique humide $\rho = 2180 \text{ kg/m}3$

Teneur en eau naturelle Wnat = 14.2 %

Masse volumique sèche $\rho d = 1910$ kg/m3

Résultats à titre indicatif

Masse volumique des particules solides de sols PS (kg/m3) = 2650 (estimée)

Masse volumique du sol saturé ρ sat (kg/m3) = 2187

Teneur en eau naturelle de saturation Wsat (%) = 14.7

Porosité n (%) = 28.0

Indice des vides e = 0.389

Degré de saturation Sr (%) = 96.8

Observations:

SolFIN-2.29.01.00~12-2

GINGER CEBTP

Parc d'activités Clément Ader 12 rue des Frères Lumière 34830 JACOU

CLASSIFICATION DES MATERIAUX UTILISABLES DANS LA CONSTRUCTION **DES**

REMBLAIS ET DES COUCHES DE FORME D'INFRASTRUCTURES ROUTIERES

Informations générales

CAI2.O260.0001 N° dossier :

Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Demandeur / MOE : APL DATA CENTER LES PENNES MIRABEAU Localité :

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0224

Mode de prélévement : Sondage carotté

Prélevé par : GINGER CEBTP

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

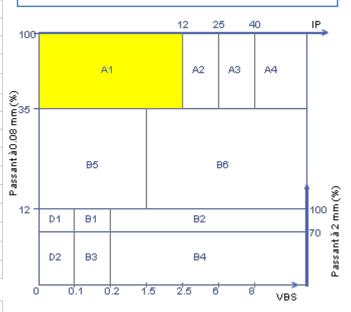
Description: LIMON sableux marron clair

Paramètres de nature

Désignation de l'essai	Norme	Résultats	Unité
Dmax	ME selon NFP94-056	5	mm
Passant à 50 mm	ME selon NFP94-056	100.0	%
Passant à 2 mm (fraction 0/50 mm)	ME selon NFP94-056	98.9	%
Passant à 80 µm (fraction 0/50 mm)	ME selon NFP94-056	78.5	%
Passant à 2 µm	ME selon NFP94-057		%
Limite de liquidité - W _L	ME selon NFP94-051	27	%
Limite de plasticité - W _P	ME selon NFP94-051	22	%
Indice de plasticité - IP	WL- WP	5	
VBS	NF P94-068	1.41	g /100 g
MV des particules solides ρS	NF P94-054		kg/m3
Propreté des sables - SE	NF EN 933-8		%
Masse volumique humide ρ	NF P94-053	1880	kg/m3
Masse volumique sèche pd	NF P94-064		t/m3
Teneur en carbonate	NF P94-048		%
Teneur en MO - C _{MOC}	XP P 94-047		%

Paramètres d'état hydrique

Désignation de l'essai	Norme	Résultats	Unité
Teneur en eau naturelle - Wn	NF P 94-050	17.7	%
Indice Portant immédiat - IPI	NF P94-078		
Indice de Consistance - I _C	(WL-Wn)/IP		
Wn/W OPN	NF P94-093		


Paramètres de comportement mécanique - Matériaux rocheux

Désignation de l'essai	Norme	Résultats	Unité
Fragmentabilité - FR	NF P94-066		
Dégradabilité - DG	NF P94-067		
micro-Deval - MDE (10/14 mm)	NF EN 1097-1		
Los Angeles - LA (10/14 mm)	NF EN 1097-2		
Friabilité des sables - Fs	NF P18-576		

CLASSIFICATION NF P 11-300: A1

Sondage: SC1 EI Nº4

Profondeur: 5.50/5.90 m

Pour information:

Teneur en eau Optimale W OPN (%):	
Masse volumique sèche Optimale o OPN (Mg/m3):	

Observations:

GINGER CEBTP

Parc d'activités Clément Ader 12 rue des Frères Lumière 34830 JACOU

ANALYSE GRANULOMÉTRIQUE Méthode par tamisage à sec après lavage Méthode d'essai selon NF P 94-056 (norme périmée)

Dérogation à la norme (NF P 94-056):La fin du tamisage sur chaque tamis est determinée visuellement

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation: LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0224

Mode de prélévement : Sondage carotté Sondage : SC1 El N°4

Prélevé par : GINGER CEBTP Profondeur : 5.50/5.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

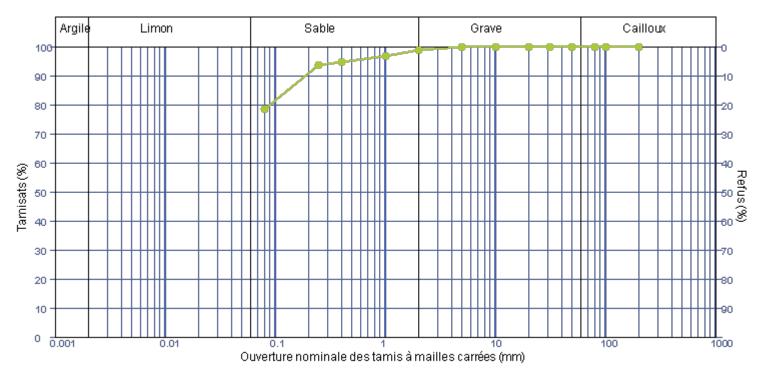
Date de livraison : 28/01/25 dm (mm) : 5

Description: LIMON sableux marron clair

Informations sur l'essai

Mode de séchage: Etuvage Technicien: DEFOSSE Christophe

Température : 105°C Date essai : 05/03/25


Analyse granulométrique sur 0/D mm

Tamis à mailles	200	100	80	50	31.5	20	10	5	2	1	400	250	80	
carrées (mm)	mm	mm	mm	μm	μm	µm								
Passant cumulé (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.9	96.8	94.7	93.7	78.5	

Facteur d'uniformité Cu = (N.D.)

Facteur de courbure Cc = (N.D.)

Facteur de symétrie Cs = (N.D.)

Observations:

GINGER CEBTP

Parc d'activités Clément Ader 12 rue des Frères Lumière 34830 JACOU

Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériaux rocheux par l'essai à la tâche Méthode d'essai selon NF P 94-068 (norme périmée)

Informations générales

N° dossier: CAI2.0260.0001 Client / MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE :APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0224

Mode de prélévement : Sondage carotté Sondage : SC1 El N°4

Prélevé par : GINGER CEBTP Profondeur : 5.50/5.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

dm (mm): 5

Description: LIMON sableux marron clair

Informations sur l'essai

Mode de séchage : Etuvage Technicien : MAZOUNI Mohammed

Température : 105°C Date essai : 07/03/25

Résultats

VB = 1.41 g de bleu pour 100 g de matériaux sec (Sans correction)

VBs = 1.41 g de bleu pour 100 g de matériaux sec C = 100.0 W (%) : 17.7

C= proportion de la fraction 0/5 mm dans la fraction 0/50 mm (%) - Si dm = 5 mm, alors C=100 %

Observations:

GINGER CEBTP

Parc d'activités Clément Ader 12 rue des Frères Lumière 34830 JACOU

DÉTERMINATION DES LIMITES D'ATTERBERG Limite de liquidité à la coupelle - Limite de plasticité au rouleau Méthode d'essai selon NF P 94-051 (norme périmée)

Informations générales

N° dossier: CAI2.0260.0001 Client /MO: STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon N° 25AIX-0224

Mode de prélévement : Sondage carotté Sondage : SC1 El N°4

Prélevé par : GINGER CEBTP Profondeur : 5.50/5.90 m

Date prélévement : 31/12/24

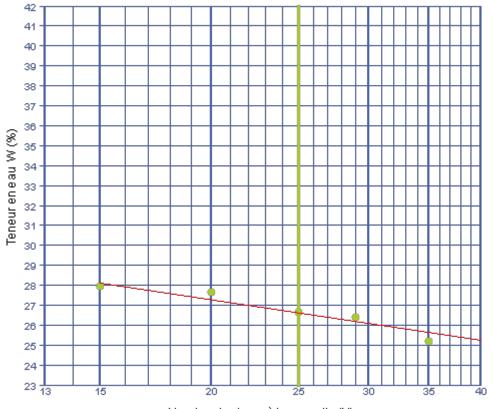
Mode de conservation : Ech. Intact en gaine PVC

Date de livraison : 28/01/25 dm (mm) : 5 w (%): 17.7

Description: LIMON sableux marron clair

Informations sur l'essai

Mode de séchage : Etuvage Technicien : DEFOSSE Christophe


Température : 105°C Date essai : 10/03/25

Résultats de l'essai

	Lir	mite de Liquidité	W _L (%)
Mesure N°		Nb de chocs N	Teneur en eau W (%)
	1	35	25.2
	2	29	26.4
	3	25	26.6
	4	20	27.6
	5	15	27.9

Limite de Plasticité W P (%)					
Mesure N°	Teneur en eau W (%)				
1	22.2				
2	22.0				
3	22.3				

Limite de liquidité	W_L (%) = 27
Limite de plasticité	W_P (%) = 22
Indice de plasticité	I _P = 5

Nombre de chocs à la coupelle (N)

Observations:

GINGER CEBTP

Parc d'activités Clément Ader 12 rue des Frères Lumière 34830 JACOU

DÉTERMINATION DE LA MASSE VOLUMIQUE DES SOLS FINS Méthode de la trousse coupante, du moule et de l'immersion dans l'eau Méthode d'essai selon NF P 94-053 (norme périmée)

Informations générales

N° dossier : CAI2.0260.0001 Client /MO : STE TELEHOUSE INTL CORP EUROPE

Désignation : LES PENNES MIRABEAU - PROJET CEZANNE - G2 AVP PRO

Localité : LES PENNES MIRABEAU Demandeur / MOE : APL DATA CENTER

Chargé d'affaire : Hippolyte GRZES

Informations sur l'échantillon 25AIX-0224

Mode de prélévement : Sondage carotté Sondage : SC1 El N°4

Prélevé par : GINGER CEBTP Profondeur : 5.50/5.90 m

Date prélévement : 31/12/24

Mode de conservation : Ech. Intact en gaine PVC

Date de livraison: 28/01/25

Description: LIMON sableux marron clair

Informations sur l'essai

Mode de séchage : Etuvage Technicien : LOSSE Jéremie

Température : 105°C Date essai : 04/03/25

Méthode utilisée: Moule Température de salle d'essai (°C): 17.0

Résultats de l'essai

Masse volumique humide $\rho = 1880$ kg/m3

Teneur en eau naturelle $W_{nat} = 24.2$ %

Masse volumique sèche $\rho d = 1510$ kg/m3

Résultats à titre indicatif

Masse volumique des particules solides de sols PS (kg/m3) = 2700 (estimée)

Masse volumique du sol saturé ρ sat (kg/m3) = 1954

Teneur en eau naturelle de saturation Wsat (%) = 29.0

Porosité n (%) = 43.9

Indice des vides e = 0.783

Degré de saturation Sr (%) = 83.5

Observations:

ESSAIS À L'APPAREIL TRIAXIAL DE REVOLUTION Essai consolidé non drainé (CU + u) avec mesure de la pression interstitielle NF P 94-074

Informations générales

Dossier N°: CAI2.O260.0001 Chantier: PROJET CEZANNE LES PENNES MIRABEAU

Client STE TELEHOUSE INTL CORP EUROPE

Agence de MONTPELLIER

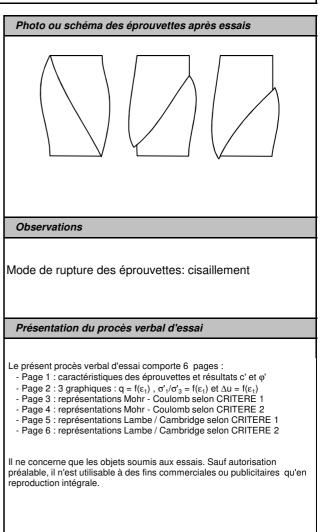
Service Contrôle et Essais 12, rue des Frères Lumière 34830 JACOU

Tél.: 04-67-59-40-10 Fax.: 04-67-59-23-30

cebtp.montpellier@groupe-cebtp.com

Informations sur l'échantillon

Mode de prélèvement : carottier σ_{v0} = 104 KPaDate de prélèvement : - u_0 = 0 KPaMode de conservation : gaineSondage N° : SC1


Prélevé par : GINGER CEBTP Profondeur : 5.50-5.90 m

Date de réception : Date essai : 04/03/2025

Description: LIMON sableux marron clair

					scription .			
Caractéristiques initiales des éprouvettes								
Valeurs	Unité	Ep 1	Ep 2	Ep 3	Ep 4			
H ₀	mm	98.87	100.89	98.86				
D ₀	mm	50.00	50.00	50.00				
w	%	25.2	24.2	22.1				
ρ	Mg/m ³	1.970	1.984	2.025				
ρ_{d}	Mg/m ³	1.574	1.597	1.658				
Sr	%	95	95	95				
е		0.72	0.69	0.63				
ρ_{s}	Mg/m ³	2.70	Estimée					
Caractéris	tiques des	éprouvettes	après satu	ration				
ΔV	cm ³	20.99	20.38	13.77				
В		0.95	0.95	0.95				
u_{cp}	kPa	393	398	395				
σ 'c	kPa	107	202	305				
Caractéris	stiques des	éprouvettes	après cons	solidation				
ΔH_s	mm	-0.82	-1.11	-1.31				
ΔV_{s}	cm ³	-4.8	-6.5	-7.7				
\mathbf{w}_{sat}	%	24.9	23.5	20.9				
ρ	Mg/m ³	2.016	2.040	2.087				
ρ_{d}	Mg/m ³	1.614	1.651	1.727				
е	-	0.67	0.64	0.56				
t ₁₀₀	min	32	10	7				
Vit	tesse d'écra	sement - v =	50	μm/min				
Caractéris	stiques fina	les des épro	uvettes					
w	%	23.4	22.3	20.3				

Résultats		
Définition des critères d'interprétation de rupture	φ' Degrés	c' kPa
\Box CRITERE 1 = q max = $(\sigma_1 - \sigma_3)$ max	29	5
\Diamond CRITERE 2 = $(\sigma'_1 / \sigma'_3)_{max}$	30	1

Fait à MONTPELLIER le 20/03/2025 Le Technicien chargé de l'essai J. Losse

ESSAIS À L'APPAREIL TRIAXIAL DE REVOLUTION Essai consolidé non drainé (CU + u) avec mesure de la pression interstitielle NF P 94-074

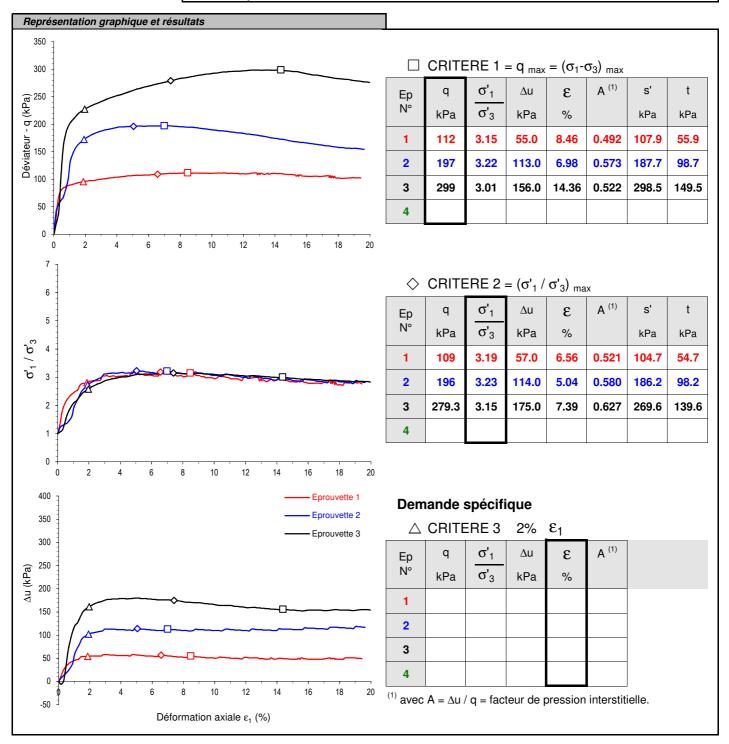
Agence de MONTPELLIER

Service Contrôle et Essais 12, rue des Frères Lumière 34830 JACOU

Tél.: 04-67-59-40-10 Fax.: 04-67-59-23-30

cebtp.montpellier@groupe-cebtp.com

Informations générales


Dossier N°: CAI2.O260.0001 Chantier: PROJET CEZANNE

LES PENNES MIRABEAU

Client: STE TELEHOUSE INTL CORP EUROPE

Informations sur l'échantillon

Sondage N°: SC1 104 kPa $\sigma_{v0} =$ **Profondeur :** 5.50-5.90 m 0 kPa $u_0 =$

ESSAIS À L'APPAREIL TRIAXIAL DE REVOLUTION Essai consolidé non drainé (CU + u) avec mesure de la pression interstitielle

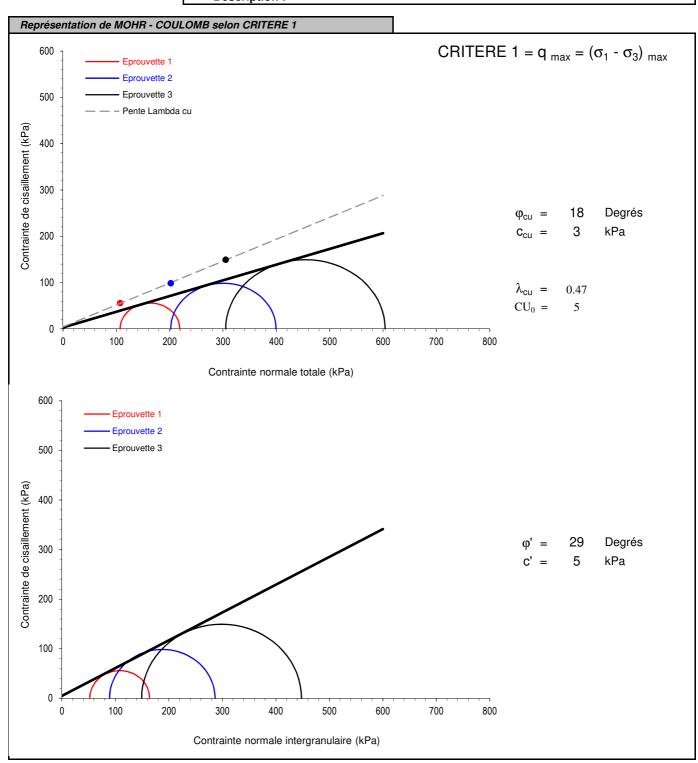
NF P 94-074

Agence de MONTPELLIER

Service Contrôle et Essais 12, rue des Frères Lumière 34830 JACOU

Tél.: 04-67-59-40-10 Fax.: 04-67-59-23-30

cebtp.montpellier@groupe-cebtp.com


Informations générales

Dossier N°: CAI2.O260.0001 Chantier: PROJET CEZANNE LES PENNES MIRABEAU

Client: STE TELEHOUSE INTL CORP EUROPE

Informations sur l'échantillon

104 Sondage N°: SC1 kPa $\sigma_{v0} =$ **Profondeur:** 5.50-5.90 m kPa $u_0 =$ 0

ESSAIS À L'APPAREIL TRIAXIAL DE REVOLUTION Essai consolidé non drainé (CU + u) avec mesure de la pression interstitielle

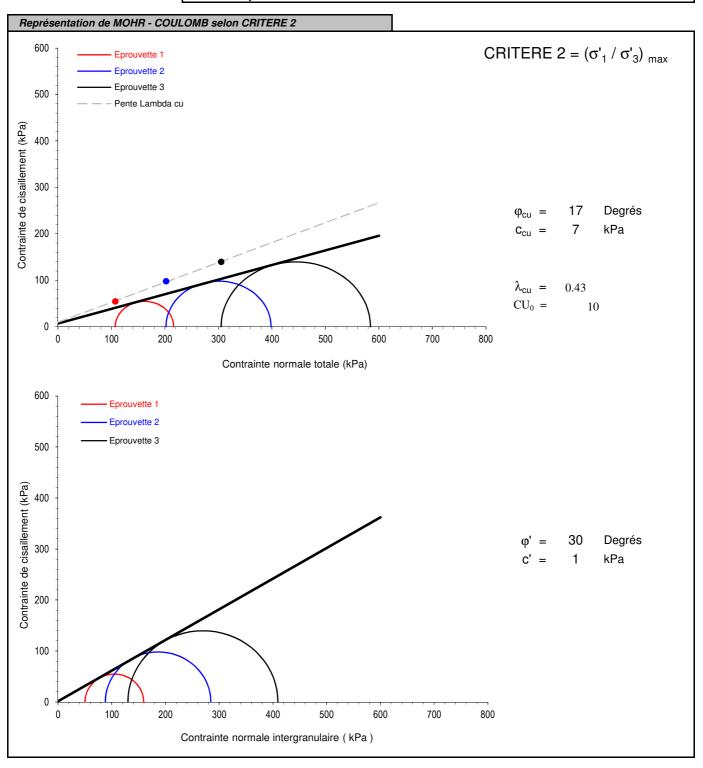
NF P 94-074

Agence de MONTPELLIER

Service Contrôle et Essais 12, rue des Frères Lumière 34830 JACOU

Tél.: 04-67-59-40-10 Fax.: 04-67-59-23-30

cebtp.montpellier@groupe-cebtp.com


Informations générales

Dossier N°: CAI2.O260.0001 Chantier: PROJET CEZANNE LES PENNES MIRABEAU

Client: STE TELEHOUSE INTL CORP EUROPE

Informations sur l'échantillon

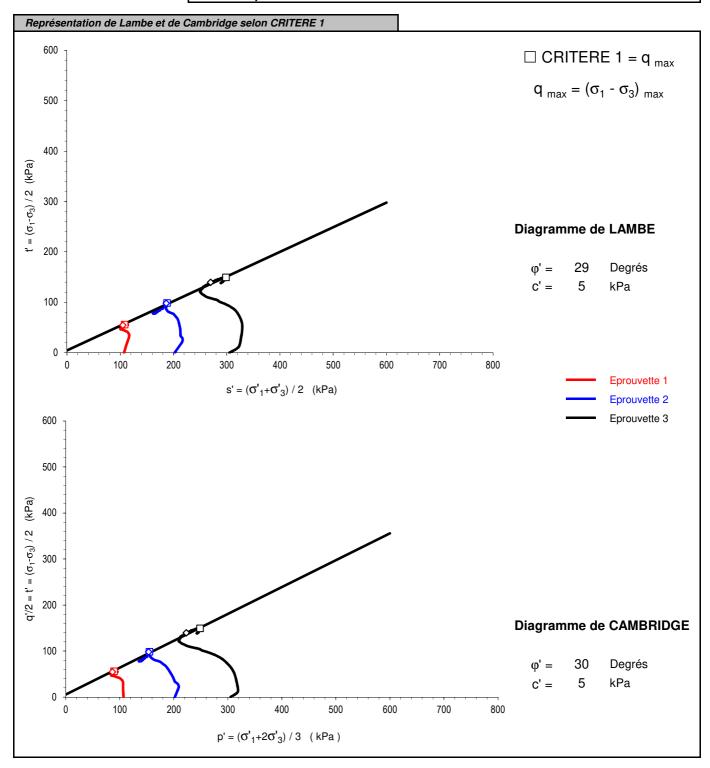
104 Sondage N°: SC1 kPa $\sigma_{v0} =$ **Profondeur:** 5.50-5.90 m kPa $u_0 =$ 0

ESSAIS À L'APPAREIL TRIAXIAL DE REVOLUTION Essai consolidé non drainé (CU + u) avec mesure de la pression interstitielle NF P 94-074

Agence de MONTPELLIER Service Contrôle et Essais 12, rue des Frères Lumière 34830 JACOU

Tél.: 04-67-59-40-10 Fax.: 04-67-59-23-30

cebtp.montpellier@groupe-cebtp.com


Informations générales

Dossier N°: CAI2.O260.0001
Chantier: PROJET CEZANNE
LES PENNES MIRABEAU

Client: STE TELEHOUSE INTL CORP EUROPE

Informations sur l'échantillon

Sondage N°: SC1 $\sigma_{v0} = 104$ kPa Profondeur: 5.50-5.90 m $u_0 = 0$ kPa

ESSAIS À L'APPAREIL TRIAXIAL DE REVOLUTION Essai consolidé non drainé (CU + u) avec mesure de la pression interstitielle

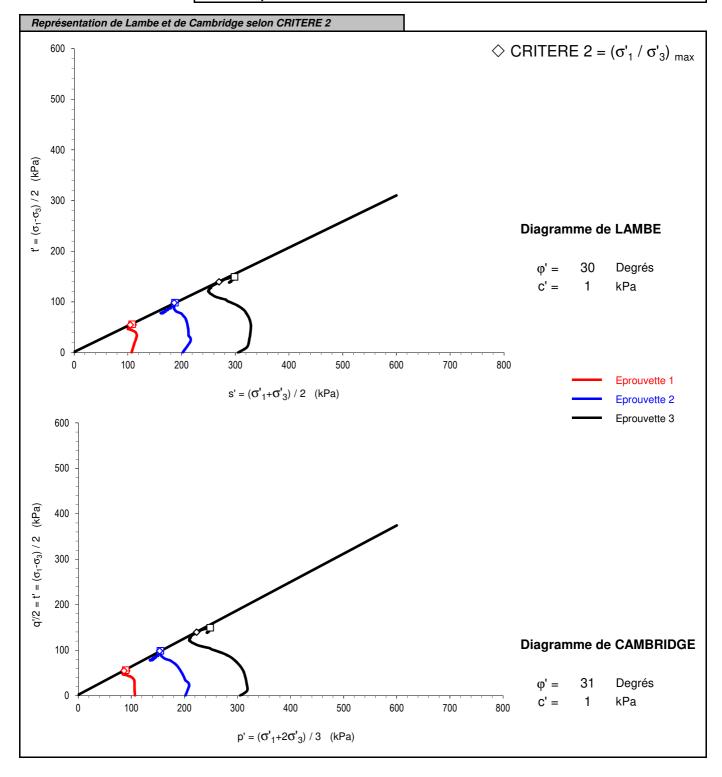
NF P 94-074

Agence de MONTPELLIER

Service Contrôle et Essais 12, rue des Frères Lumière 34830 JACOU

Tél.: 04-67-59-40-10 Fax.: 04-67-59-23-30

cebtp.montpellier@groupe-cebtp.com

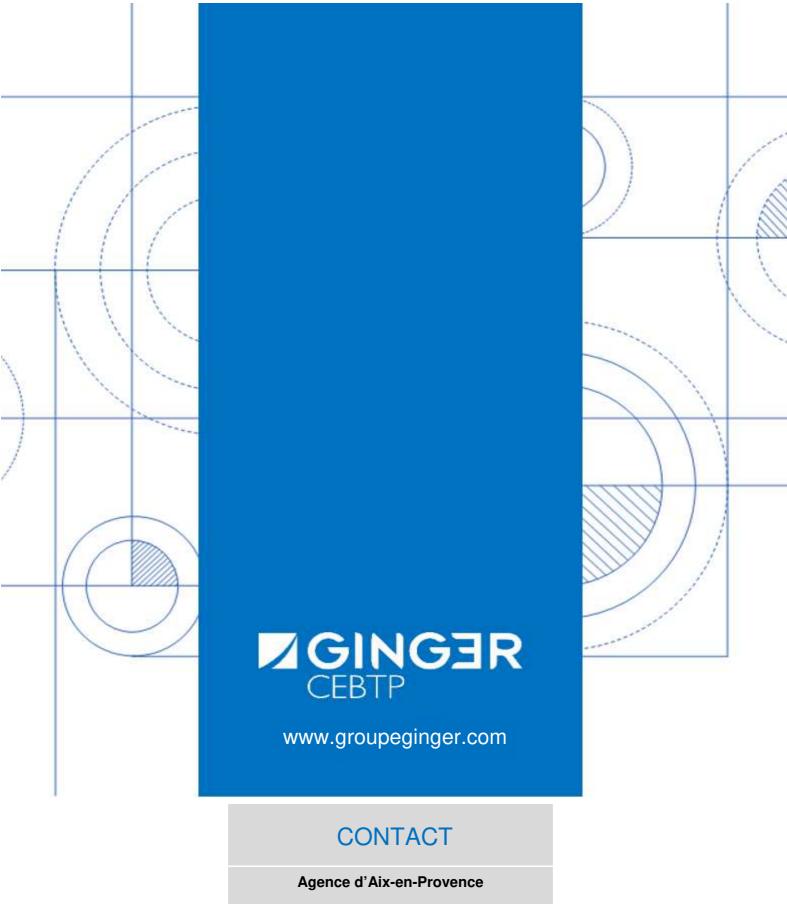

Informations générales

Dossier N°: CAI2.O260.0001 Chantier: PROJET CEZANNE LES PENNES MIRABEAU

Client: STE TELEHOUSE INTL CORP EUROPE

Informations sur l'échantillon

Sondage N°: SC1 104 kPa $\sigma_{v0} =$ **Profondeur:** 5.50-5.90 m kPa $u_0 =$ 0


Dossier : CAl2.O.260 Rapport 1 Indice 1 du 25/03/2025

Dossier : CAI2.O.260 Rapport 1 Indice 1 du 25/03/2025

Dossier : CAl2.O.260 Rapport 1 Indice 1 du 25/03/2025

1030 rue JRGG de la Lauzière, Les Milles 13290 AIX EN PROVENCE

Tél. 33 (0) 4 42 99 27 00 Fax 33 (0) 4 42 99 27 35

www.groupeginger.com