CEZANNE

TELEHOUSE

137 Bd Voltaire 75011 PARIS 01.56.06.40.30

CEZANNE

Allée de la broquette 13170 LES PENNES MIRABEAU

APL DATA CENTER

106 avenue Marx Dormoy 92120 MONTROUGE 01.46.94.91.00 www.apl-datacenter.com

RICHET PATRICK

Bat. A2 Centre de vie Agora, Les paluds 13400 AUBAGNE 04.42.72.64.27

PJ-72 Etude de performance énergétique— Demande d'autorisation environnementale PROJET EMETTEUR PHASE ZONE NIVEAU LOT TYPE NUMERO INDICE CEZANNE APL 01

Pièce jointe (PJ)	Intitulé
PJ-01	Plan de localisation
PJ-02	Eléments graphiques
PJ-03	Attestation de propriété
PJ-04	Etude d'impact
PJ-04A	Résumé non technique de l'Etude d'impact
PJ-04B	Annexes à l'Etude d'impact
PJ-07	Notice de présentation non technique du projet
PJ-46	Description du projet
PJ-47	Capacités techniques et financières
PJ-48	Plan des réseaux
PJ-49	Etude de dangers
PJ-53-54-55	Plan de surveillance des émissions de GES
PJ-57-58-59	Volet IED MTD
PJ-63	Avis du maire
PJ-72	Etude de performance énergétique
DI 70	Analyse de conformité réglementaire aux arrêtés ministériels de prescriptions
PJ-79	générales
PJ-122	Autorisation de production d'électricité
Annexes	

CEZANNE

TELEHOUSE

137 Bd Voltaire 75011 PARIS 01.56.06.40.30

APL DATA CENTER

106 avenue Marx Dormoy 92120 MONTROUGE 01.46.94.91.00 www.apl-datacenter.com

RICHET ARCHITECTE

Bat. A2 Centre de vie Agora, Les paluds 13400 AUBAGNE 04.42.72.64.27

CEZANNE

Allée de la broquette 13170 LES PENNES MIRABEAU

NOM DU DOCUMENT

Notice de calcul PUE et CUE

Nom du fichier : CEZ-APL-APD-TCE-REP-00006-01-Notice de calcul PUE

PROJET PHASE ZONE NIVEAU LOT **TYPE NUMERO INDICE EMETTEUR** CEZ APD ZZ REP 00006 **APL** ZΖ **TCE**

TABLEAU DES REVISIONS

Date	Sommaire des modifications	Réda	cteur	Vérific	cateur	Appro	bateur
14/4/2025	Première émission	MZB	V	ACQ	V	ACR	V
		Date modifications	Date modifications Réda	Date modifications Rédacteur	Date modifications Rédacteur Vérific	Date modifications Rédacteur Vérificateur	Date modifications Rédacteur Vérificateur Appro

SOMMAIRE

I. RESUME	6
II. GENERALITES	8
II.1. Objet du document	8
II.2. Contexte	
III. METHODOLOGIE DE CALCUL	
III.1. Périmètre considéré	9
III.2. Logiciels de simulation	9
III.2.1. OpenModelica	
III.2.2. Python / VS Code	
III.3. Méthodologie	11
III.3.1. Création du synoptique de fonctionnement sur Open Modelica	
III.3.2. Simulation dynamique annuelle du fonctionnement sur Visual Studio	12
III.3.3. Rappel de la norme	13
IV. PRESENTATION DES DONNEES D'ENTREE	15
IV.1. Données Météorologiques	15
IV.2. Caractéristiques des équipements techniques	
IV.2.1. Groupes Froids	
IV.2.2. Equipements de refroidissement	
IV.2.2.1. Fanwalls	
IV.2.2.2. CDU	21
IV.2.2.3. CRAHs	22
IV.2.3. Transformateur électrique	24
IV.2.4. Uninterruptible Power Supplies (UPS)	25
IV.2.5. Pertes par effet joule des tableaux électrique (par voie elec, 4 voies au total)	25
V. PRESENTATION DU MODEL	26
V.1. Modèle principal	26
V.2. Local transformateurs	
V.3. Local énergie	
V.4. Datahall (fanwalls)	
V.5. Datahall (DLC)	
VI. PRESENTATION DES RESULTATS	
VI.1. 100% de charge IT	
vi. 1. 100/0 de charge 11	52

	VI.1.1.	PUE sur l'année (100% charge)	.32
	VI.1.2.	Bilan des consommations énergétiques par poste	.33
	VI.1.3.	Bilan des consommations énergétiques des postes hors IT	.34
	VI.1.4.	CUE	.34
VI.	2. 75%	de charge IT	35
		PUE sur l'année (75% charge)	
	VI.2.2.	Bilan des consommations énergétiques par poste	.36
	VI.2.3.	Bilan des consommations énergétiques des postes hors IT	.37
	VI.2.4.	CUE	.37
VI.	3. 50%	de charge IT	38
	VI.3.1.	PUE sur l'année (50% charge)	.38
	VI.3.2.	Bilan des consommations énergétiques par poste	.39
	VI.3.3.	Bilan des consommations énergétiques des postes hors IT	.40
	VI.3.4.	CUE	.40
VI.	4. 25 %	de charge IT	41
	VI.4.1.	PUE sur l'année (25% charge)	.41
	VI.4.2.	Bilan des consommations énergétiques par poste	.42
	VI.4.3.	Bilan des consommations énergétiques des postes hors IT	.43
	V/L // //	CHE	10

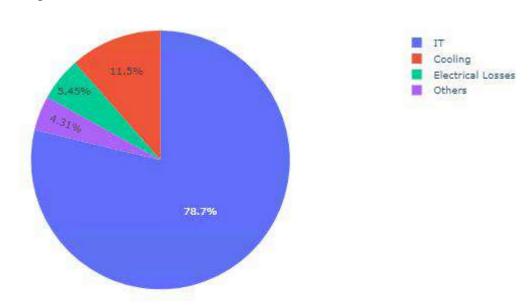
I. RESUME

Ce document évalue la performance énergétique du Data Center **N1** ainsi que pour **l'ensemble du campus**.

Le PUE, les consommations énergétiques annuelles, leur répartition par poste ainsi que le CUE sont estimés pour un seul datacenter ainsi que pour l'ensemble du campus.

Les résultats sont obtenus sur la base des données météorologiques de l'année 2024, de l'architecture électrique et CVC ainsi que les performances des équipements prévus pour le projet.

Le **PUE moyen** à pleine charge (6 MW par bâtiment) sur l'année 2024 varie entre **1,195** et **1,423** dans des conditions nominales de fonctionnement.


Le **PUE maximal** (Peak PUE) est défini comme la valeur maximale observée du PUE au cours de l'année (2024) dans les conditions nominales de fonctionnement. Ces conditions supposent :

- Aucun incident ou défaillance système survenu
- Une alimentation complète du data center par le réseau électrique (les groupes électrogènes étant à l'arrêt)

Le Peak PUE dans ces conditions météorologiques (année 2024) est de 1,428.

Le graphique ci-après présente la part de chaque usage sur la consommation globale du site ;

- IT : consommation des serveurs/baies informatiques
- **Cooling**: consommation des équipements de production, distribution et émission frigorifique (GF, Pompes, CRACs, CRAHS...).
- **Electrical Losses** : Pertes tableaux électriques et onduleurs.
- **Others** : Préchauffage des groupes électrogènes et consommations électriques diverses (Eclairage, SSI, GTC, Vidéosurveillance...)

	Consommation électrique annuelle (MWh/an)	%	EqPUE	
IT	52′638	78,7 %	1,000	
Cooling	7′680	11,5 %	0,146	
Electrical Losses	3'646	5,5 %	0,069	
Other	2'883	4,3%	0,055	
Total (DC N1)	66′847	100.9/	1 270	
Total (Campus)	534′776	100 %	1,270	

Le PUE varie selon le taux de charge :

Load	Moyen PUE	Min PUE	Max PUE
100% (6 MW IT)	1,270	1,195	1,423
75% (4,5 MW IT)	1,283	1,205	1,434
50% (3 MW IT)	1,323	1,243	1,469
25% (1,5 MW IT)	1,495	1,419	1,647

Le PUE moyen varie entre **1,270** to **1,495** pour des taux de charge IT entre 100% et 25% (En considérant un charge IT répartie équitablement entre les salles).

La variation du PUE ainsi que la répartition des consommations énergétiques des différents taux de charge (75%, 50% et 25%) sont présentées aux **chapitres VI.2, VI.3 et VI.4**

Le CUE varie également selon le taux de charge :

Load	CUE (gCO2/kWhIT)
100% (6 MW IT)	71,1
75% (4,5 MW IT)	71,8
50% (3 MW IT)	74,1
25% (1,5 MW IT)	83,7

II. GENERALITES

II.1. Objet du document

Le présent document a pour but d'estimer la performance énergétique du Data Center à partir des performances attendues des équipements et de l'architecture proposée en phase APD.

L'objectif est d'estimer la performance énergétique du Data Center sur la base des performances attendues de l'architecture technique, des équipements et des modes de régulation retenus lors de la conception.

Il comprend:

- Une description de la méthodologie de calcul
- Une présentation des données d'entrée
- Une présentation des équipements techniques intégrés dans le modèle
- Une présentation du modèle de simulation
- Une présentation des résultats et des conclusions

Le modèle de simulation a été élaboré à partir des données issues des documents de conception CVC, électricité et plomberie.

II.2. Contexte

Le projet porte sur la réalisation d'un campus de bâtiments neufs, nommé TH Cezanne, à vocation de centre informatique de typologie Data Center, d'une puissance IT totale de 48MW IT, répartis en deux bâtiments Nord et Sud, chacun composé de Bloc. Chaque Bloc est constitué par deux salles informatiques et ses locaux Data techniques dédiés.

Un troisième bâtiment constitue la zone administrative avec bureaux.

Les hypothèses et méthode de calcul décrites dans ce document portent sur un seul bloc d'une puissance IT totale de 6 MW. Les huit blocs étant identiques en termes d'architecture et de puissance IT installée.

III. METHODOLOGIE DE CALCUL

III.1. Périmètre considéré

Toutes les installations techniques consommant de l'énergie électrique à l'intérieur du périmètre du Data Center sont prises en compte dans le calcul du PUE, à savoir :

- Alimentation électrique
- Distribution moyenne et basse tension
- Convertisseurs de puissance
- Équipements terminaux
- Chauffage, ventilation et climatisation (CVC)
- Production de froid (groupes froid)
- Distribution hydraulique (pompes)
- Distribution d'air (CTA)
- Équipements annexes

Le bloc considéré est constitué de deux salles IT. Une salle refroidie tout air grâce à des Fanwalls. La deuxième salle IT est refroidie à 80% en DLC et à 20% par des fanwalls.

Les locaux techniques sont refroidis au moyen de systèmes CRAH sur boucle d'eau glacée. Les détails sont présentés au **Chapitre V**.

III.2. Logiciels de simulation

Afin d'estimer la performance énergétique et calculer le PUE, nous avons utilisé nos outils internes développés sous Modelica et Python.

III.2.1. OpenModelica

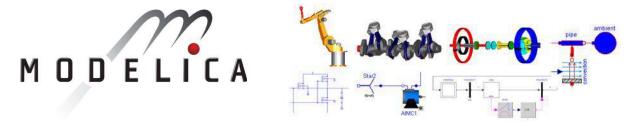


Figure 1 : Illustration de l'interface Modelica

Modelica est un langage de modélisation dédié aux systèmes complexes. Il est orienté objet et repose sur l'utilisation de composants pour modéliser des systèmes dynamiques continus, discrets ou hybrides.

Modelica propose un panoplie de bibliothèques de composants préconfigurés permettant de modéliser différents systèmes. Il est utilisé dans de nombreux secteurs tels que l'automobile, l'aéronautique, l'énergie ou encore l'industrie pour la simulation de systèmes complexes et la conception de leurs systèmes de régulation.

III.2.2. Python / VS Code

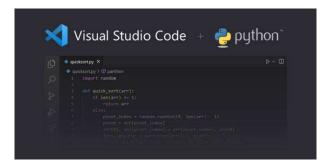


Figure 2 : Illustration de l'interface Visual Studio

Python est un langage de programmation polyvalent largement utilisé dans les domaines scientifiques et techniques. Dans le cadre de cette étude, Python a été utilisé pour le traitement des données en entrée, le post-traitement des résultats de simulation, ainsi que pour l'automatisation de certaines étapes de calcul.

Sa richesse en bibliothèques scientifiques (telles que NumPy, Pandas, Matplotlib) en fait un outil efficace pour l'analyse énergétique et la visualisation des performances du Data Center.

III.3. Méthodologie

III.3.1. <u>Création du synoptique de fonctionnement sur Open Modelica</u>

La modélisation numérique a été réalisée grâce à **Open Modelica**, un environnement de simulation open-source permettant d'analyser les performances énergétiques et hydriques du data center. Ce logiciel a permis de modéliser et simuler les flux d'énergie et d'eau en fonction des spécifications des équipements. L'illustration suivance en est un exemple

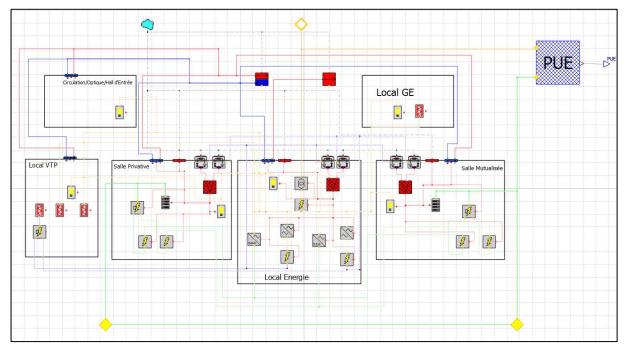


Figure 3 : Aperçu de modélisation d'un Datacenter sur Open Modelica

La modélisation inclut les principales composantes énergétiques du data center, plus précisément :

- Les équipements IT (serveurs, routeurs, etc.)
- Les systèmes de refroidissement (CRAC, CRAH, chillers, etc.)
- Les infrastructures électriques (UPS, transformateurs, etc.)
- Les usages électriques annexes (GTC, SSI, sécurité, etc.)

Chaque composante est représentée par des modèles mathématiques intégrés dans une structure globale. Les paramètres, tels que la consommation énergétique des serveurs ou l'efficacité des systèmes de refroidissement, sont renseignés en fonction des données réelles ou d'hypothèses valides.

Au vu de la taille et la complexité du modèle, la méthode de création du synoptique diffère pour ce site des plus petites sites. La méthode de simulation est par conséquent adaptée à la spécificité de ce site.

Tout d'abord, chaque Salle IT constitue un « modèle » indépendant comportant baies, équipements de refroidissement, tableaux électriques et équipements d'éclairage.

Idem pour les locaux techniques (Exemple Local Energie ou Transformateur), chaque local est modélisé séparément :

Une fois l'intégralité des salles informatiques et techniques modélisées, le modèle du datacenter est construit en connectant ces dernières l'une avec l'autre en se basant sur les synoptiques électriques et CVC.

III.3.2. Simulation dynamique annuelle du fonctionnement sur Visual Studio

Une fois le modèle énergétique du data center développé dans OpenModelica, il est exporté sous un format compatible pour une utilisation avec **Visual Studio**, un éditeur de code supportant le langage Python. L'objectif est de simuler le comportement énergétique du site sur une année complète, en prenant en compte les conditions climatiques réelles du site.

Cela permet d'exploiter des fichiers météorologiques spécifiques au site. Ces derniers contiennent des données horaires, telles que la température extérieure, l'humidité relative ou la pression atmosphérique, influençant ainsi les besoins et les performances des systèmes de refroidissement.

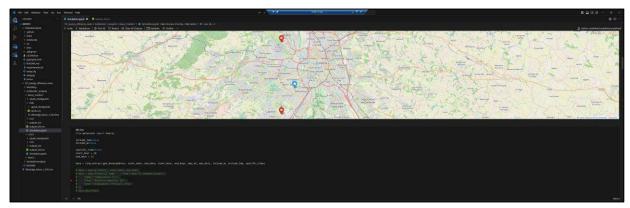


Figure 4 : Aperçu de modélisation sur Visual Studio

Cette approche permet de bénéficier de la précision des modèles physiques développés dans OpenModelica, tout en exploitant la puissance de traitement et d'analyse de Python pour réaliser des simulations sur une période donnée, adaptées à des scénarios climatiques réels.

Les données générées servent à affiner le calcul du PUE annuel et à identifier des opportunités d'optimisation énergétique en fonction des saisons.

III.3.3. Rappel de la norme

Le **PUE (Power Usage Effectiveness)** est l'indicateur le plus connu et le plus utilisé dans l'écosystème Data Center.

Le PUE, développée par le consortium Green Grid, correspond au ratio de la consommation globale du site sur la consommation spécifique des équipements informatiques. Il caractérise ainsi la performance énergétique d'un Data Center.

 $PUE = \frac{Consommation \ \'electrique \ globale \ du \ site \ informatique}{Consommation \ \'electrique \ des \ \'equipements \ informatiques}$

Cet indicateur permet de prendre en compte tous les équipements nécessaires au déploiement d'équipements informatiques et à leur sécurité (onduleurs, production et distribution de froid, éclairage, équipements de sécurité...) et de les confronter à la consommation 'utile' (la consommation des seuls équipements informatiques).

Il s'établit sur 12 mois glissant afin de prendre en compte la variation des consommations énergétiques. Il est toujours supérieur à 1.

Depuis 2016, la norme ISO_IEC_30134-2_2016 définit les modalités de calcul du PUE.

Cette norme définit notamment :

La consommation IT, qui inclut :

- Serveurs, switches, stockage, sauvegarde
- Écrans, PC portables, claviers, etc.

La consommation des postes hors IT, qui inclut :

- Production et distribution électrique (Transformateur, onduleur, production des GE, Tableau électrique, pertes de distribution, batteries, etc.)
- Production, distribution et émission de froid : groupe froid, armoire de climatisation, pompes, etc.
- Autres équipements : Eclairage, caméra, sécurité incendie, etc.

Il existe différentes catégories de PUE (niveau de précision) pour la mesure de la consommation IT en fonction des objectifs attendus :

- Catégorie 1 (PUE 1): IT UPS output Pour estimer un PUE > 1,5
- Catégorie 2 (PUE 2): IT TDO/TGO output Pour estimer 1,2 <PUE< 1,5
- Catégorie 3 (PUE 3): Entrée des équipements IT (mesure au niveau des PDU, comptage par prise PDU, hors charges non IT) Permet d'estimer un PUE < 1,2

L'objectif du projet est d'atteindre un **PUE moyen < 1,3** et un **PUE maximal < 1,45** dans le cadre de ce projet.

Par ailleurs, les baies étant sous la responsabilité du client, la mise en œuvre d'une mesure de type PUE3 s'avère complexe.

La description visuelle du PUE selon la norme des profile comme suit :

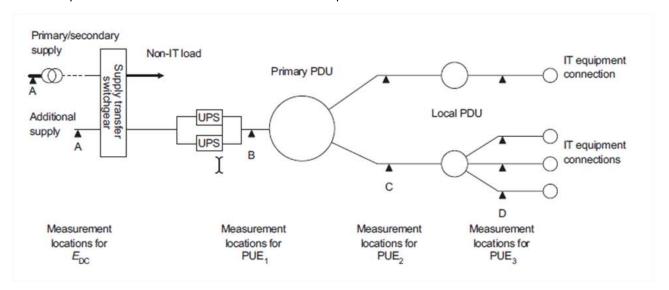


Figure 5: Illustration du standard PUE

Le **CUE (Carbon Usage Effectiveness)** est un indicateur qui mesure l'empreinte carbone d'un data center en rapportant les émissions de CO_2 à la consommation énergétique IT. Il se calcule comme le ratio entre les émissions annuelles de CO_2 (kg) et la consommation IT annuelle (kWh).

En France, grâce à un mix électrique faiblement carboné, l'empreinte carbone moyenne en 2024 est d'environ **56 gCO₂/kWh**.

IV. PRESENTATION DES DONNEES D'ENTREE

IV.1. Données Météorologiques

Un fichier météorologique spécifique au site est élaboré afin de simuler le comportement énergétique du data center en fonction des conditions climatiques locales.

Cette étape repose sur l'interpolation des données provenant des deux stations climatiques les plus proches, situées dans un rayon de 15 kilomètres autour du datacenter. Ces stations fournissent les mesures horaires clé.

Les fichiers météo utilisés sont les suivants, les données extraites sont celles de la période entre le 1^{er} Janvier et le 31 Décembre de l'année 2024 :

Station	Distance depuis le site
Marseille / Marignane	7,5 km
Aix Les Milles	11 km

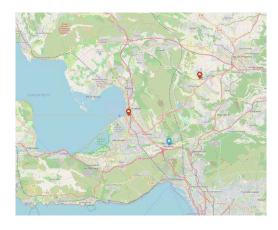


Figure 6 : Localisation du site du projet et stations climatiques

Les températures extérieures annuelles se profilent comme suit :

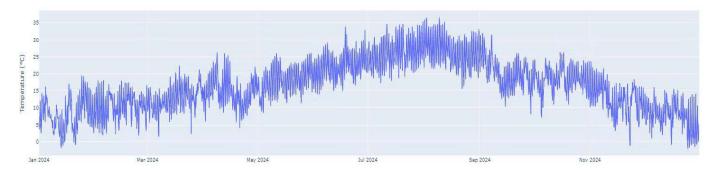


Figure 7 : Variation horaire de la température extérieure sur 12 mois (2024)

La température extérieure sur l'année écoulée varie entre -1,8°C et 36,4°C.

IV.2. Caractéristiques des équipements techniques

Les données de performance des équipements principaux sont présentées dans cette section. Elles incluent le rendement ou la consommation électrique en fonction du taux de charge de l'équipement. Pour chaque équipement, des algorithmes d'interpolation sont établis à partir de paramètres clés.

Pour la phase APD, les performances intégrées dans le modèle proviennent d'une synthèse des données fournies par les fabricants et les données APL issues de projets équivalents réalisés précédemment.

Les principaux paramètres utilisés pour ces interpolations sont les suivants :

- Taux de charge
- Températures extérieures
- Humidité relative (RH)
- Pression Atmosphérique

Les équipements présentés ci-après sont considérés dans le modèle du calcul du PUE et du CUE.

IV.2.1. Groupes Froids

Un bloc possède une production frigorifique indépendante, située en terrasse technique, constituée de 6 modules de production d'eau glacée en redondance N+1 comprenant :

- Un groupe de production d'eau glacée (chiller) à condensation par air, pouvant fonctionner en mode free-cooling.
- Un module hydraulique embarqué, comprenant la pompe primaire à débit fixe
- Une pompe secondaire à débit variable
- Un ballon de stockage d'eau glacée d'un volume de 7,5 m3
- Une pompe secondaire de distribution
- Un ensemble d'instruments de contrôle et régulation comprenant vannes, débitmètre, sonde de température, etc...,.

Chaque module de production d'eau est connecté à une boucle de distribution.

Des optimisations seront proposées aux prochaines étapes du projet, afin de faire fonctionner un nombre optimal de chillers en fonction de la puissance frigorifique requise et des conditions climatiques. Cette optimisation dépendra des performances des chillers sélectionnés.

Le Coefficient d'Efficacité Énergétique (EER) est défini comme suit :

$$EER = \frac{Puissance\ frigorifique\ produite\ par\ le\ chiller(kW)}{Puissance\ électrique\ consommée\ par\ le\ chiller(kW)}$$

La performance des chillers est évaluée selon leur EER, en fonction du taux de charge et de la température de l'air en entrée condenseur. Les performances utilisées dans le modèle sont issues des tables de performances fournies par les fabricants.

Job Name: 24FR007118 A3 Prepared For: Unit Tag: Configuration Quantity: 1

	The second secon
Modèle refroidisseur	Sintesis RTAF, Monobloc à air, Compresseurs à Vis
Modèles	RTAF G 340 XE XLN EC FC
Application du projet	Refroidisseur à condensation par air - Temp. sortie std (4,5°C à 20°C) - Basse temp. amb. (-18°C / +46°C)
Type compresseur	Screw
Type de réfrigérant	Charge complète R1234ze
Seasonal space energy efficiency (ηs,c) / SEER (1)	1
Récupération de chaleur	Sans récupération de chaleur
Free cooling	Total FREE COOLING - Glycol Free (pour réseau Non-Glycolé)
Type de pompe	Signal commande de pompe (On/Off)
Alimentation	400 V/50 Hz/3 ph

nsignes du projet	
	Mode froid
Température ambiante	47,0 C
Temp. entrée évap.	32,0 C
Temp. sortie évap.	20,0 C
Type fluide évap.	Eau
Point de gel évap.	0,0 C
Facteur d'encrassement évap.	0,017615 m2-deg C/kW
Altitude	0,0 m

	Mode froid	(1)
Puissance Froide Brute	1386,20 kW	
Puissance froide nette	1385,80 kW	
Puissance absorbée unité	505,1 kW	
EER brute	2,75 EER (kW/kW)	
EER nette	2,74 EER (kW/kW)	
Debit évap.	27,70 L/s	
Pertes de charge évap.	10,5 kPa	
Débit mini évaporateur	20,80 L/s	
Débit maxi évaporateur	83,40 L/s	

Free Cooling		
	Mode froid	(5)
Free cooling	Total FREE COOLING - Glycol Free (pour réseau Non-Glycolé)	
Temp. ambiante en mode Free Cooling	8,0 C	
FC Temp. de basculement	4,2 C	
Temp. Entrée en mode FC	32,0 C	
Temp. Sortie en mode FC	20,0 C	
Débit en mode FC	28,00 L/s	
Pertes de charge Free Cooling Hiver	32,0 kPa	
Puissance Froide du Free Cooling	1092,34 kW	
Puissance absorbée ventilateurs	37,82 kW	
Efficacité Free Cooling	28,880 kW/kW	

Figure 8 : Fiche technique des groupes froids

TRANE a fourni les performances suivantes pour le **RTAF G 340 XE XLN EC**, exprimées en termes de **coefficient d'efficacité énergétique (EER)** :

T°C \ Load	100% 1385 kW	50% 1066kW	50% 716 kW	25% 368 kW
-5 °C	47,4	42,8	32,2	17,3
0 °C	36,3	37,1	30,3	17
5 °C	19,3	26,8	26,5	16,4
10 °C	20,1	20	17,4	14,9
12 °C	16,8	17,7	10,9	13,5
15 °C	12,8	13,8	13,7	8,2
20 °C	9,6	8,7	6,9	10,1
25 °C	7,1	6,5	6,8	5,3
30 °C	5,4	5,6	5,7	5
35 ℃	4,6	4,6	4,5	4,3
40 °C	3,9	3,9	4,0	3,9
45 °C	3,4	3,3	3,6	3,4
50 °C	3,3	2,8	3,1	3

IV.2.2. Equipements de refroidissement

Les systèmes de Fanwalls sont au nombre de :

- 5 Fanwalls en redondance N+1 dans une salle IT DLC de puissance IT 3MW
- 10 Fanwalls en redondance N+2 dans une salle IT Standard de puissance IT 3 MW

Température de consigne de l'air soufflé : 24°C.

Température de consigne de retour : 36°C.

Le système CDU se compose de 4 unités par Datahall DLC de capacité 3 MW IT avec une redondance N+1 par demi Datahall.

Chaque CDU fonctionne indépendamment afin de maintenir la pression différentielle nécessaire à 2,5 bars (réglable) sur la distribution du système de refroidissement Technology (TCS) et une température d'alimentation fixée à 25°C (réglable).

Les systèmes de CRAH sont au nombre de 2 par salle, en redondance N+1, pour les salles annexes (Local Energie et Local Transformateur)

Température de consigne de l'air soufflé : 25°C.

Température de consigne de retour : 35°C.

IV.2.2.1. Fanwalls

Les systèmes de Fanwalls sont au nombre de :

- 5 Fanwalls en redondance N+1 dans une salle IT DLC de puissance IT 3MW
- 10 Fanwalls en redondance N+2 dans une salle IT Standard de puissance IT 3 MW

Complete Unit

THE STATE OF THE S			
Informations sur l'unité			
Famille de produits	CWA	Largeur	3960 mm
Numéro de modèle	CA80NEVG3	Profondeur	1480 mm
Espace de service avant	1000 mm	Hauteur	3670 mm
Raccordement eau glacée	89 mm	Poids	3000 kg
Raccord de vidange	10 mm		
Données d'entrée			
Mode de calcul	Return Airflow + Fluid Out Temperature	Type de fluide	Water
Température de l'air d'entrée de l'unité - Bulbe sec	36 ℃	Concentration du fluide	0 %
Humidité relative de l'air d'entrée de l'unité	30 %	Température d'entrée du fluide	20 ℃
Débit d'air de reprise de l'unité	95700 ^{m3} / _{hr}	Température de sortie du fluide	30 °C
ESP	50 Pa	Débit du fluide	9.39 ½
Altitude	0 m		
Performance de l'unité			
Unité	STANDARD	Température de l'air sortie de l'unité - Bulbe humide	18.4 °C
Modèle d'unité	CA80_v1	Humidité relative de l'air sortie	61.5 %
Débit d'air de reprise de l'unité	95700 ^{m3} /hr	Tension d'alimentation électrique de l'unité	400V/3ph/50Hz+N-CE
Débit d'air unitaire	89356 m ³ / _{hr} of Standard Air	Puissance absorbée de l'unité	10.7 kW
Capacité de refroidissement totale nette	382 kW	EER total net de l'unité	35.5
Capacité de refroidissement nette sensible	382 kW	ERR net Sens de l'unité	35.5
nSHR	1	Classe de filtre	ePM1050%
Capacité de refroidissement totale brute	393 kW	Perte de charge hydraulique de l'unité	59 kPa
Capacité de refroidissement brute sensible	393 kW	Niveau de puissance acoustique d'aspiration	80.4 dBA

Figure 9 : Fiche technique des Fanwalls

IV.2.2.2. CDU

Le système CDU se compose de 4 unités par Datahall DLC de capacité 3 MW IT avec une redondance N+1 par demi Datahall.

Unit Information			
Product Family	XDU	Weight	875 kg
Model Number	XDU1350	Height	2122 mm
Pump Power Option	380V-400V/3ph/60Hz+N- CE	Width	900 mm
Secondary Fluid Filter Type	50 um mesh fi l ter	Depth	1200 mm
Data Input			
Primary Fluid Type	Water	Primary Inlet Temperature	22.0 °C
Secondary Fluid Type	P.G.	Primary Fluid Flow	1182.0 1/min
Secondary Concentration	25.00 %	Secondary Outlet Temperature	25.9 °C
Secondary ESP Fluid	1.50 bar	Secondary Fluid Flow	1224.0 ½min
Unit Performance		-18	
Gross Heat Load	821.2 kW	Fluid Secondary Temperature Difference	10.0 K
Net Heat Load	811.0 kW	Fluid Primary Pressure Drop	0.81 bar
Unit Power Input	10.1 kW	Fluid Primary Pressure Drop	80.8 kPa
Primary Flow / Heat Load	1.44 ^{l/min} / _{kW}	Fluid Secondary Pressure Drop	2.49 bar
Fluid Primary Temperature Difference	10.0 K	Fluid Secondary Pressure Drop	248.8 kPa
Single Brazed Plate Heat Exc	changer Performance		
Primary Fluid Flow	591.0 ½ _{min}	Secondary Fluid Outlet Temperature	25.9 °C
Secondary Fluid Flow	612.0 / _{min}	Primary Fluid Port Velocity	6.0 m/s
Primary Fluid Outlet Temperature	32.0 °C	Secondary Fluid Port Velocity	3.9 ^m / _s
Pump			
Pumps In Operation	3	Operating Ampere	19.8 A
Modulation	79.3 %	Full Load Ampere	37.5 A
Power	10.1 kW		

Figure 10 : Fiche technique des CDUs

IV.2.2.3. CRAHs

Les systèmes de CRAH sont au nombre de 2 par salle, en redondance N+1, pour le local énergie

		p	W51WEH	E3		
Open I	Door Extended He	ight,Dow	nflow Do	wn,HT Coil,EC Fan	Advanced - HE	
Température salle		35,0	°C	Fluide	WATER	
Humidité relative sa	ille	30,0	%	Temp d'entrée d'e	au 20,0	°C
Débit air		29780	m³/h	Temp de sortie d'	eau 32,0	°C
PSD		20	Pa	Débit eau unité	2,06	I/s
Niv. mer		0	m	Alim élec unité	400 V/3 ph/50 Hz	
		Perf	formance	unité		
Unité	PW5	IWEHE3		P élec abs unité	2,68	kW
Puissance frigo tota	ile	100,0	kW	Unit Net Sens EEF	37,30	
Puissance frigo sens	sible net	100,0	kW	EER nette totale o	le l'unité 37,30	
nSHR		1,00		Classe filtre interr	ne (EN16890 std)ePM10	50%
Puissance frigorifiqu	ue totale brute	102,7	kW	PDC air unité	167	Pa
Puissance frigorifique	ue sensible brute	102,7	kW	Perte de charge filtre interne		Pa
Temp air soufflage		24,6	°C	Perte charge air b	att 89	Pa
Hygrométrie air de s	soufflage	54,4	%	Prof.	1050	mm
NPS salle (à 2m c.l)		59	dB(A)	Larg.	2550	mm
				Haut.	2350	mm
				Poids	975	kg
			Batt EG			
Quantité		1	n°	PDC batterie+con	nections coté eau 26	kPa
Débit eau unité		2,06	I/s	Perte de charge d	e la soupape/ma9/350	kPa
PDC de l'unité coté	eau	35	kPa	PIC Valve max flo	w rate 6,3	I/s
PIC valve model	EP050R2+B/	AC-N_v1		PIC Valve flow rat	e setting 33	%
			Ventil CV	V		
Quantité		3	n°	Intensité nom	3 x 1,51	Α
Type	EC Fan Advan	ced - HE		I max 100% charge	e 3 x 5,1	Α
Alim. Elec.	400 V/3 p	h/50 Hz		I rotor bloqué	3 x 0,1	Α
P. élec abs		3 x 0,86	kW	Modulation % du v	ventilateur (intérie 64)0	%

Figure 11 : Fiche technique des CRAHs (local énergie)

Les systèmes de CRAH sont au nombre de 2 par salle, en redondance N+1, pour le local Transfo

		P	W066ESE	3		
Ext	ended Height,Down	flow D	own,Lega	acy coil,EC Fan Adv	anced - HE	
Température salle		34,0	°C	Fluide	WATE	R
Humidité relative sa	lle	30,0	%	Temp d'entrée d'e	au 20,	o °C
Débit air	1	9550	m³/h	Temp de sortie d'e	au 32,	0 °C
PSD		50	Pa	Débit eau unité	0,9	5 I/s
Niv. mer		0	m	Alim élec unité	400 V/3 ph/50 H	z
		Perf	ormance	unité	SHOOM WINDS TO PROPER SHOW	
Unité	PW066	ESE3		P élec abs unité	2,4	1 kW
Puissance frigo total	le	45,0	kW	Unit Net Sens EEF	18,7	D
Puissance frigo sens	ible net	45,0	kW	EER nette totale d	e l'unité 18,7	D
nSHR		1,00		Classe filtre intern	e (EN16890 std)ePM	10 50%
Puissance frigorifiqu	e totale brute	47,4	kW	PDC air unité	16	7 Pa
Puissance frigorifiqu	e sensible brute	47,4	kW	Perte de charge fi	tre interne 3	8 Pa
Temp air soufflage		26,9	°C	Perte charge air b	att 8	4 Pa
Hygrométrie air de s	oufflage	44,9	%	Prof.	89	0 mm
NPS salle (à 2m c.l)		63	dB(A)	Larg.	175	0 mm
				Haut.	197	0 mm
				Poids	56	0 kg
			Batt EG			
Quantité		1	n°	PDC batterie+con	nections coté eau 1	4 kPa
Débit eau unité		0,95	I/s	Perte de charge d	e la soupape/ma 2/35	0 kPa
PDC de l'unité coté e	eau	16	kPa	PIC Valve max flor	w rate 6,	3 I/s
PIC valve model	EP050R2+BAC-	N_v1		PIC Valve flow rate	e setting N	A %
			Ventil CV	1		
Quantité		2	n°	Intensité nom	2 x 1,8	2 A
Туре	EC Fan Advanced	I-HE		I max 100% charge	2 x 5,	1 A
Alim. Elec.	400 V/3 ph/5	0 Hz		I rotor bloqué	2 x 0,	1 A
P. élec abs	2:	x 1,19	kW	Modulation % du v	rentilateur (intérie v)	0 %

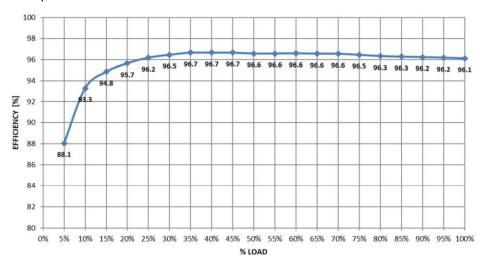
Figure 12 : Fiche technique des CRAHs (local transfo)

IV.2.3. <u>Transformateur électrique</u>

Les pertes transformateur sont estimés grâce aux valeurs des pertes à vide et pertes en charge.

ITEM 1 QTY 12	Offre:	QN-25004474		Rev.	TMC-000	00					
CARACTERISTIQUES GENERALES	011101			11011	1011						
Design	-	Transformateur ty	pe Sec								
Application	*	Distribution - Data	Center								
Modèle	*	TMCRES									
Installation	*	Intérieur									
Refroidissement	-	AN									
Puissance nominale	[kVA]	3500									
Tension nominale HT / Réglages HT à vide	[kV]	13,8	- 1	1	±2 x 2,5	%					
Nombre de secondaires / Tension nominale BT à vide	[N./kV]	1)		0,4	1					
Classe d'isolement HT BT	[kV]	17,5	38	/ 95		1,1	1 :	3	1		
Fréquence	[Hz]	50									
Nombre de phases	100	3									
Couplage	- ≅	Dyn11									
Conducteur HV/LV		AL		1	AL	53					
Type d'enroulements HV/LV	*	Enrobé résine	e	1	Enrob	é résine					
Température ambiante	°C	-25		1	+40	D					
Echauffement des enroulements HT/BT	[K/K]	100		1	100)					
Classe thermique HT/BT		F		1	F						
Classe climatique/environnement/tenue au feu	*	E2 ,C2, F1									
Altitude (a.s.l.)	[m]	< 1000									
GARANTIES TECHNIQUES											
Normes de références	*	EU548-14 Tie	er2								
Impedance	[%]	6,5	± '	10%							
Pertes à vide	[kW]	4,15	+	0%							
Pertes en charge at 120°	[kW]	26	+	0%							
Pertes totales	[kW]	30,15	+	0%							
PEI	[%]	99,406									
Courant à vide	[%]	0,7									
Niveau de décharges partielles	[pC]	< 10									
Niveau de pression acoustique (Lpa @ 1m / Lwa)	[dBA]	58/73									
DIMENSIONS ET POIDS											
Degré de protection	2	IP00		IF	P31	Zone	de corr	osion		30	C2
Longueur	[mm]	2210		2	750	Coule	ur enve	elop.		3	RAL 7035
Largeur	[mm]	1310		1-	400	Réf. e	nvelop	pe		30	BXV05-IP31-IN-02-Fe-1
Hauteur	[mm]	2600		2	960						
Poids	[Kg]	7400		7	760						

Figure 13 : Fiche technique du transformateur



IV.2.4. <u>Uninterruptible Power Supplies (UPS)</u>

L'efficacité des onduleurs et considérée comme suit

Taux de charge [%]	Rendement [%]
25	96.2
50	96.6
75	96.5
100	96.1

Les données de performance sont basées sur les données issue du fabricant :

IT UPS: 2 x 1050 kW par local énergie

HVAC UPS: 1 x 180 kW par local énergie

IV.2.5. Pertes par effet joule des tableaux électrique (par voie elec, 4 voies au total)

	Nombre	Puissance (kVA)	Puissance (kW)	Pertes (%)	Pertes par équipement (kW)	Pertes Totales (kW)
TGBT 3500 kVA	1	3500	3200	0,5 %	16	16
UPS 1250 kVA	2	1250	1050	4 %	42	84
TGHQ IT 2500 kVA	1	2400	2100	0,5%	10,5	10,5
UPS 180 kVA	1	180	140	4 %	5,6	11,2
TGHQ CVC 180 kVA	1	180	140	0,5%	0,7	0,7

	Nombre	Puissance (kW)	Pertes (%)	Pertes par équipement (kW)	Pertes Totales (kW)
Transfo 3500 kVA	1	3200	1 %	32	32
Cellule HTA	1	3200	0,2 %	6	6

V. PRESENTATION DU MODEL

Ce chapitre montre un aperçu des modèles Modelica implémentés pour le calcul au sein du modèle principal

Les liens entre les modules permettent de réaliser les bilans thermiques, électriques et aérauliques des différents modules.

V.1. Modèle principal

A partir de la puissance IT des différentes salles et des données climatiques ce macro-modèle a pour objectif de calculer les consommations et le PUE

Le modèle contient :

- 2 DataHalls, une nommée DH Fanwalls (salle refroidie full air), la deuxième DH CDU (salle refroidie à 80% en DLC)
- 4 locaux transformateurs (1 par voie électrique)
- 4 locaux énergie (1 par voie électrique)
- Les groupes froids et CTA
- La composante fichier météo
- Le calculateur PUE

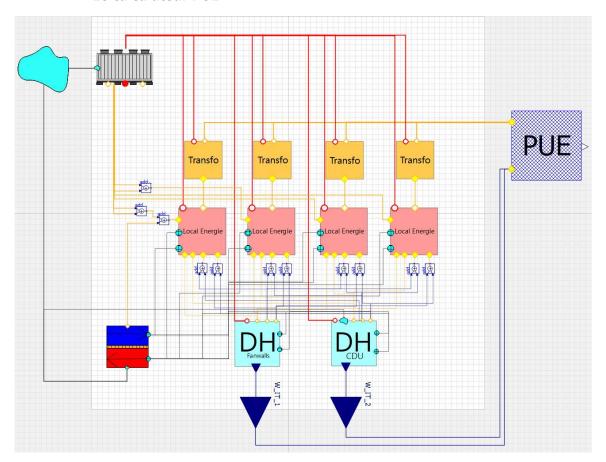


Figure 14 : Illustration du modèle principal

V.2. Local transformateurs

Chaque salle contient :

- 1 transformateur
- 1 cellule HT
- 2 CRAHs
- L'éclairage

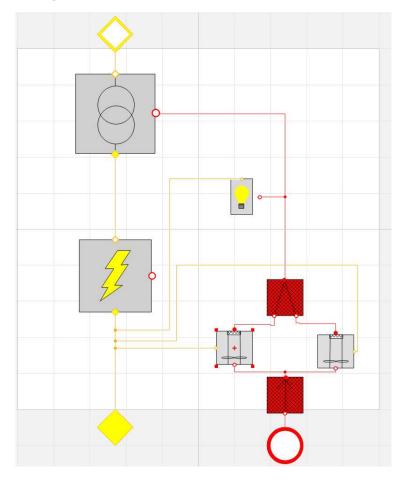


Figure 15 : Illustration du local Transfo

V.3. Local énergie

Chaque salle contient:

- 1 TGBT
- 1 TGHQ IT
- 1 TGHQ CVC
- 2 UPS IT
- 1 UPS CVC
- L'éclairage (comprenant la salle batterie)
- 2 CRAHs
- Soufflage et reprise de l'air (connectés aux CTA)
- 3 puissances considérant les usages auxiliaires (GE, ventilateurs d'extraction et divers usages figurant dans le bilan de puissance)

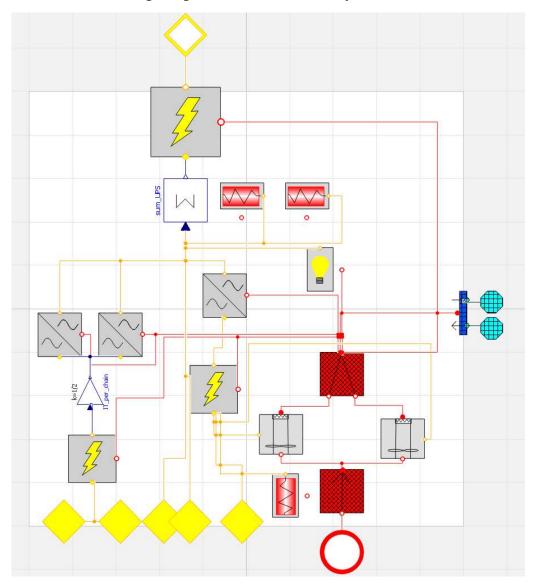


Figure 16 : Illustration du local énergie

V.4. Datahall (fanwalls)

La salle contient :

- Les racks IT
- Fanwalls
- TDOs IT (représentés par un seul)
- TDN Fanwalls (représentés par un seul)
- Eclairage
- Soufflage et reprise de l'air (connectés aux CTA)

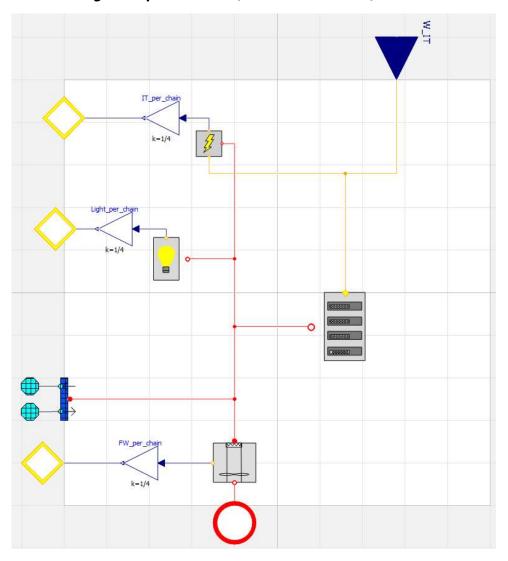


Figure 17 : Illustration du Datahall (full air)

V.5. Datahall (DLC)

La salle contient :

- Les racks IT
- Fanwalls + CDUs
- TDOs IT (représentés par un seul)
- TDN Fanwalls (représentés par un seul)
- Eclairage
- Soufflage et reprise de l'air (connectés aux CTA)

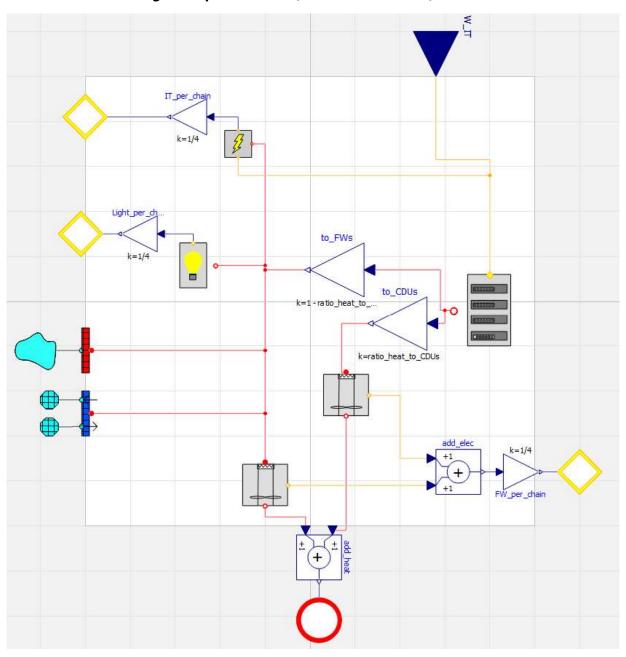


Figure 18 : Illustration du Datahall (CDU)

VI. PRESENTATION DES RESULTATS

Les performances énergétiques sont évaluées sur la base des paramètres suivants :

- L'architecture de refroidissement et ses conditions de fonctionnement telle que prévue dans les études.
- L'architecture d'air neuf et ses conditions de fonctionnement telle que prévue dans les études.
- L'architecture d'alimentation haute tension telle que prévue dans les études.
- L'architecture d'alimentation basse tension et ses conditions de fonctionnement telle que prévue dans les études.
- La sélection des équipements (du point de vue des performances énergétiques)
- Des conditions de fonctionnement des équipements

Ainsi, nos estimations de consommation énergétique en fonctionnement du futur data center seront considérées comme caduc si ces paramètres venait à être modifiés.

Pour rappel: L'objectif du projet est d'atteindre dans le cadre de ce projet

-un **PUE moyen < 1,3** et

-un **PUE maximal < 1,45**,

Par ailleurs, les baies étant sous la responsabilité du client, la mise en œuvre d'une mesure de type PUE3 s'avère complexe.

VI.1. 100% de charge IT

Tous les Data Halls et locaux réseaux sont supposés à 100% de charge

VI.1.1. PUE sur l'année (100% charge)

La variation horaire du PUE sur l'année 2024 se profile comme suit :

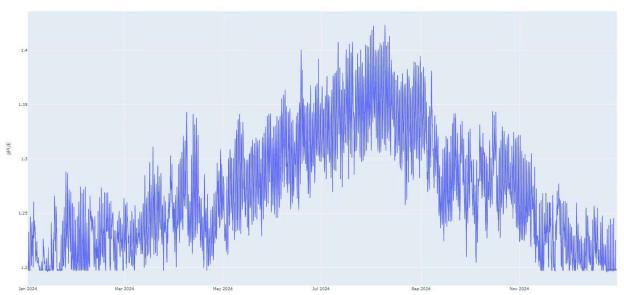


Figure 19 : Evolution du PUE sur l'année (100% IT)

	PUE
Minimum	1,195
Moyen	1,270
Maximum	1,423

Le PUE horaire à pleine charge sur l'année 2024 a varié entre **1,195** et **1,423** dans des conditions nominales de fonctionnement.

Le PUE Maximal (Peak PUE) est défini comme la valeur maximale observée du PUE au cours de l'année (2024) dans les conditions nominales de fonctionnement. Ces conditions supposent :

- Aucun incident ou défaillance système survenu
- Une alimentation complète du data center par le réseau électrique (les groupes électrogènes étant à l'arrêt)

Le Peak PUE dans ces conditions météorologiques (année 2024) est de 1,428,

VI.1.2. Bilan des consommations énergétiques par poste

Le graphique ci-après présente la part de chaque usage sur la consommation globale du site ;

- IT : consommation des serveurs/baies informatiques
- **Cooling**: consommation des équipements de production, distribution et émission frigorifique (GF, Pompes, CRACs, CRAHS...).
- Electrical Losses : Pertes tableaux électriques et onduleurs.
- **Others**: Préchauffage des groupes électrogènes et consommations électriques diverses (Eclairage, SSI, GTC, Vidéosurveillance...)

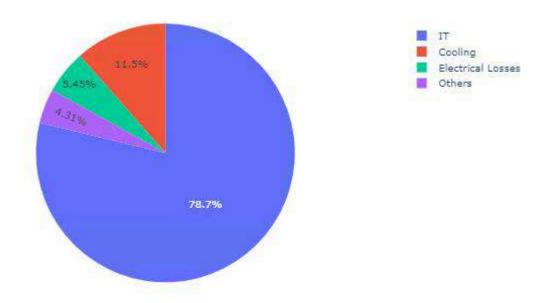


Figure 20 : Part des postes de consommation (100 % IT)

	Consommation électrique annuelle (MWh/an)	%	EqPUE
IT	52′638	78,7 %	1,000
Cooling	7'680	11,5 %	0,146
Electrical Losses	3'646	5,5 %	0,069
Other	2′883	4,3%	0,055
Total (DC N1)	66′847	100 %	1 270
Total (Campus)	534′776	100 %	1,270

VI.1.3. Bilan des consommations énergétiques des postes hors IT

78,7 % de la consommation énergétique du bâtiment provient de l'IT, l'ensemble des postes hors IT **(22,3 %)** sont analysés dans le tableau suivant :

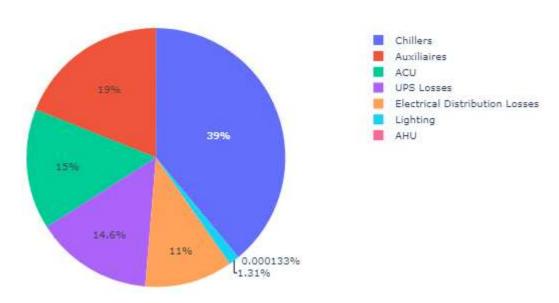


Figure 21: Part des postes de consommation (Hors IT)

	Consommation électrique annuelle (MWh/an)	% (hors IT)	EqPUE
Groupes froids	5′542	39 %	0,068
Auxiliaires	2'697	19 %	0,054
Climatisation	2′138	15 %	0,053
Pertes UPS	2′080	14,6 %	0,047
Pertes tableaux électriques	1′566	11 %	0,016
Eclairage	186	1,3 %	0,006
СТА	84	<1%	0,001
Total	14′209	100 %	0,270

VI.1.4. CUE

Le CUE du site pour un taux de charge à **100%** en considérant un impact CO2 à **56 gCO₂/kWh** est de **71,1 gCO₂/kWh**.

VI.2. 75% de charge IT

Tous les Data Halls et locaux réseaux sont supposés à 75% de charge

VI.2.1. PUE sur l'année (75% charge)

La variation horaire du PUE sur l'année 2024 se profile comme suit :

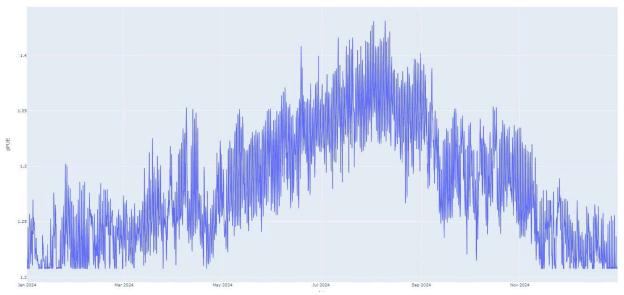


Figure 22 : Evolution du PUE sur l'année (75% IT)

	PUE
Minimum	1,205
Moyen	1,283
Maximum	1,434

Le PUE horaire à 75% de la charge sur l'année 2024 a varié entre **1,205** et **1,434** dans des conditions nominales de fonctionnement.

Le PUE Maximal (Peak PUE) est défini comme la valeur maximale observée du PUE au cours de l'année (2024) dans les conditions nominales de fonctionnement. Ces conditions supposent :

- Aucun incident ou défaillance système survenu
- Une alimentation complète du data center par le réseau électrique (les groupes électrogènes étant à l'arrêt)

Le Peak PUE dans ces conditions météorologiques (année 2024) est de 1,434,

VI.2.2. Bilan des consommations énergétiques par poste

Le graphique ci-après présente la part de chaque usage sur la consommation globale du site ;

- IT : consommation des serveurs/baies informatiques
- **Cooling**: consommation des équipements de production, distribution et émission frigorifique (GF, Pompes, CRACs, CRAHS...).
- Electrical Losses : Pertes tableaux électriques et onduleurs.
- **Others**: Préchauffage des groupes électrogènes et consommations électriques diverses (Eclairage, SSI, GTC, Vidéosurveillance...)

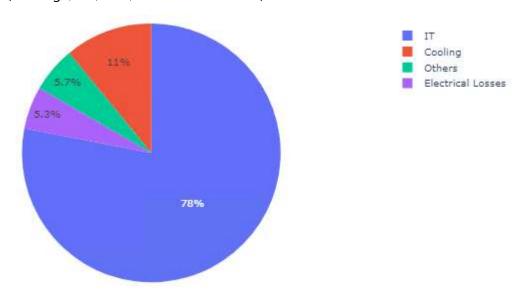


Figure 23: Part des postes de consommation (50% IT)

	Consommation électrique annuelle (MWh/an)	%	EqPUE
IT	39′478	78,0 %	1,000
Cooling	5′541	11,0 %	0,140
Other	2′883	5,7 %	0,073
Electrical Losses	2'683	5,3%	0,068
Total (DC N1)	50′585	100 %	4 204
Total (Campus)	404′680	100 %	1,281

VI.2.3. Bilan des consommations énergétiques des postes hors IT

78 % de la consommation énergétique du bâtiment provient de l'IT, l'ensemble des postes hors IT **(23** %) sont analysés dans le tableau suivant :

Figure 24: Part des postes de consommation (Hors IT)

	Consommation électrique annuelle (MWh/an)	% (hors IT)	EqPUE
Groupes froids	4′226	38,1 %	0,107
Auxiliaires	2'697	24,3 %	0,068
Pertes UPS	1′525	13,7 %	0,039
Climatisation	1′315	11,8 %	0,033
Pertes tableaux électriques	1′159	10,4 %	0,029
Eclairage	186	1,67 %	0,005
СТА	84	<1%	0,001
Total	11′108	100 %	0,281

VI.2.4. CUE

Le CUE du site pour un taux de charge à **75%** en considérant un impact CO2 à **56 gCO₂/kWh** est de **71,8 gCO₂/kWh**.

VI.3. 50% de charge IT

Tous les Data Halls et locaux réseaux sont supposés à 50% de charge

VI.3.1. PUE sur l'année (50% charge)

La variation horaire du PUE sur l'année 2024 se profile comme suit :

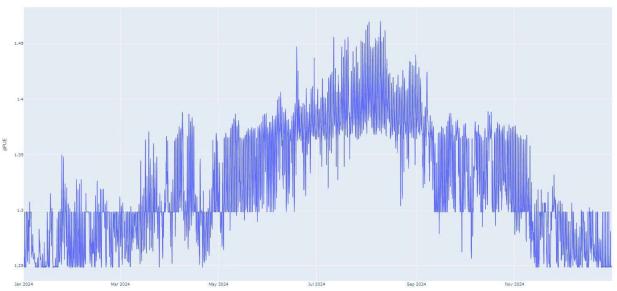


Figure 25 : Evolution du PUE sur l'année (50% IT)

	PUE
Minimum	1,243
Moyen	1,323
Maximum	1,469

Le PUE horaire à 50% de la charge sur l'année 2024 a varié entre **1,243** et **1,469** dans des conditions nominales de fonctionnement.

Le PUE Maximal (Peak PUE) est défini comme la valeur maximale observée du PUE au cours de l'année (2024) dans les conditions nominales de fonctionnement. Ces conditions supposent :

- Aucun incident ou défaillance système survenu
- Une alimentation complète du data center par le réseau électrique (les groupes électrogènes étant à l'arrêt)

Le Peak PUE dans ces conditions météorologiques (année 2024) est de 1,469,

VI.3.2. Bilan des consommations énergétiques par poste

Le graphique ci-après présente la part de chaque usage sur la consommation globale du site ;

- **IT**: consommation des serveurs/baies informatiques
- **Cooling**: consommation des équipements de production, distribution et émission frigorifique (GF, Pompes, CRACs, CRAHS...).
- Electrical Losses : Pertes tableaux électriques et onduleurs.
- **Others**: Préchauffage des groupes électrogènes et consommations électriques diverses (Eclairage, SSI, GTC, Vidéosurveillance...)

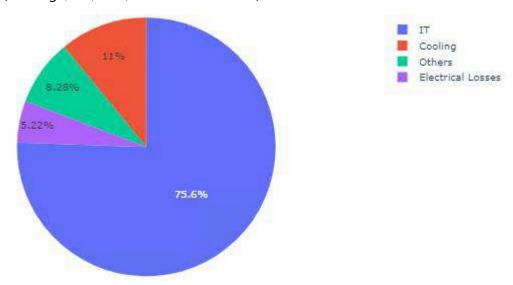


Figure 26: Part des postes de consommation (50% IT)

	Consommation électrique annuelle (MWh/an)	%	EqPUE	
IT	26′319	75,6 %	1,000	
Cooling	3′817	11,0 %	0,145	
Other	2′883	8,2 %	0,110	
Electrical Losses	1′817	5,2%	0,069	
Total (DC N1)	34′836	100 %	4 224	
Total (Campus)	278′688	100 %	1,324	

VI.3.3. Bilan des consommations énergétiques des postes hors IT

75,6 % de la consommation énergétique du bâtiment provient de l'IT, l'ensemble des postes hors IT **(24,4 %)** sont analysés dans le tableau suivant :

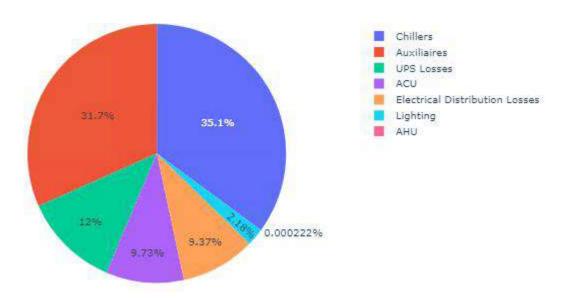


Figure 27: Part des postes de consommation (Hors IT)

	Consommation électrique annuelle (MWh/an)	% (hors IT)	EqPUE
Groupes froids	2′988	35,1 %	0,114
Auxiliaires	2'697	31,7 %	0,102
Pertes UPS	1′019	12 %	0,039
Climatisation	828	9,7 %	0,031
Pertes tableaux électriques	798	9,3 %	0,030
Eclairage	186	2,2 %	0,007
СТА	84	<1%	0,001
Total	8′517	100 %	0,324

VI.3.4. CUE

Le CUE du site pour un taux de charge à 50% en considérant un impact CO2 à 56 gCO₂/kWh est de 74,1 gCO₂/kWh.

VI.4. 25% de charge IT

Tous les Data Halls et locaux réseaux sont supposés à 25% de charge

VI.4.1. PUE sur l'année (25% charge)

La variation horaire du PUE sur l'année 2024 se profile comme suit :

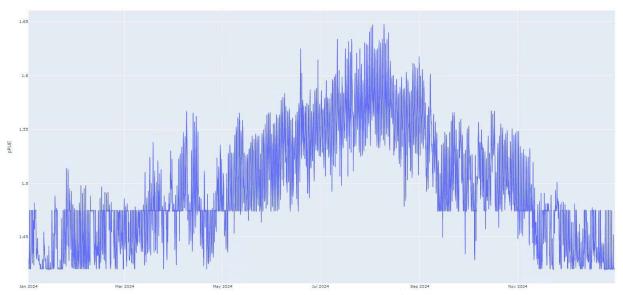


Figure 28 : Evolution du PUE sur l'année (25% IT)

	PUE
Minimum	1,419
Moyen	1,495
Maximum	1,647

Le PUE horaire à 25% de la charge sur l'année 2024 a varié entre **1,419** et **1,647** dans des conditions nominales de fonctionnement.

Le PUE Maximal (Peak PUE) est défini comme la valeur maximale observée du PUE au cours de l'année (2024) dans les conditions nominales de fonctionnement. Ces conditions supposent :

- Aucun incident ou défaillance système survenu
- Une alimentation complète du data center par le réseau électrique (les groupes électrogènes étant à l'arrêt)

Le Peak PUE dans ces conditions météorologiques (année 2024) est de 1,647,

VI.4.2. Bilan des consommations énergétiques par poste

Le graphique ci-après présente la part de chaque usage sur la consommation globale du site ;

- IT : consommation des serveurs/baies informatiques
- **Cooling**: consommation des équipements de production, distribution et émission frigorifique (GF, Pompes, CRACs, CRAHS...).
- Electrical Losses : Pertes tableaux électriques et onduleurs.
- **Others**: Préchauffage des groupes électrogènes et consommations électriques diverses (Eclairage, SSI, GTC, Vidéosurveillance...)

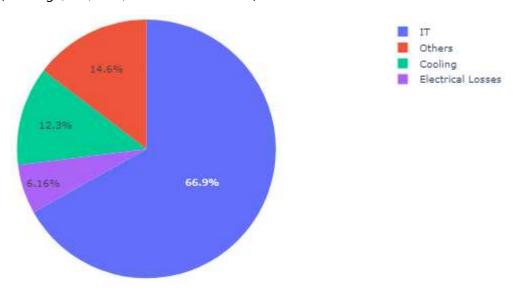


Figure 29: Part des postes de consommation (25% IT)

	Consommation électrique annuelle (MWh/an)	%	EqPUE
IT	13′160	66,9 %	1,000
Other	2′883	14,6 %	0,219
Cooling	2'428	12.3 %	0,185
Electrical Losses	1′212	6,2%	0,092
Total (DC N1)	19′983	100 %	1 100
Total (Campus)	159′864	100 %	1,496

VI.4.3. Bilan des consommations énergétiques des postes hors IT

66,9 % de la consommation énergétique du bâtiment provient de l'IT, l'ensemble des postes hors IT **(33,1 %)** sont analysés dans le tableau suivant :

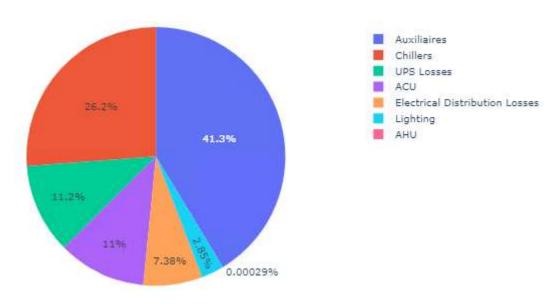


Figure 30 : Part des postes de consommation (Hors IT)

	Consommation électrique annuelle (MWh/an)	% (hors IT)	EqPUE
Auxiliaires	2′988	41,3 %	0,205
Groupes froids	1′711	26,2 %	0,130
Pertes UPS	731	11,2 %	0,056
Climatisation	718	11 %	0,066
Pertes tableaux électriques	481	7,4 %	0,037
Eclairage	186	2,9 %	0,014
СТА	84	<1%	0,001
Total	6′823	100 %	0,496

VI.4.4. CUE

Le CUE du site pour un taux de charge à 25% en considérant un impact CO2 à 56 gCO₂/kWh est de 83,7 gCO₂/kWh.

CEZANNE

Note technique récupération de la chaleur fatale

TELEHOUSE

137 Bd Voltaire 75011 PARIS 01.56.06.40.30

APL DATA CENTER

106 avenue Marx Dormoy 92120 MONTROUGE 01.46.94.91.00 www.apl-datacenter.com

RICHET ARCHITECTE

Bat. A2 Centre de vie Agora, Les paluds 13400 AUBAGNE 04.42.72.64.27

CEZANNE

Allée de la broquette 13170 LES PENNES MIRABEAU

NOM DU DOCUMENT

Note technique – Récupération de la chaleur fatale

ı									
	PROJET	EMETTEUR	PHASE	ZONE	NIVEAU	LOT	TYPE	NUMERO	INDICE
	CEZ	APL	APD	ZZ	ZZ	TCE	NTE	00021	02

TABLEAU DES REVISIONS

Version	Date	Sommaire des modifications	Rédacteur		Vérifica	iteur	Approba	teur
01	17/03/25	Première émission	ACR	ACR V		V	DNA	V
02	04/04/25	Mise à jour	ACR	ACR V		V	DNA	V

SOMMAIRE

I.	GENERALITES	4
	Objet du document	
	Contexte	
	DESCRIPTION TECHNIQUE	
II.1	Fonctionnement général du système de refroidissement	5
	Récupération de la chaleur fatale	
II.3	Valorisation de la chaleur fatale	6

I. GENERALITES

I.1 Objet du document

Ce document décrit le principe technique de récupération de la chaleur fatale envisagée sur le campus CEZANNE de TELEHOUSE, sur la commune des Pennes-Mirabeau.

Ce document présente également l'usage de la chaleur valorisée immédiatement sur le campus, et le potentiel pour des tiers.

I.2 Contexte

Ce projet de campus de data center est situé sur la commune des Pennes Mirabeau (13), sur une parcelle d'environ 60 000 m².

Il est constitué de :

- Deux bâtiments dédiés à l'activité datacenter :
- Un bâtiment NORD regroupant 6 data center, codés de droite à gauche N1, N2, N3, N4, N5 et N6.
- Un bâtiment SUD regroupant 2 data center, codés de droite à gauche S1 et S2.
 - Un bâtiment de bureaux, nommé OFFICE et codé O.
 - Une sous-station HTB, codé BS.
 - Deux postes de livraison ENEDIS, codé TR A et TR B.
 - Une sous-station de récupération de chaleur, codé BR.

La construction du campus sera réalisée en plusieurs phases suivant la mise à disposition des alimentations principales du site ainsi que de la planification du déploiement de l'activité de TELEHOUSE.

La puissance cible du campus est de 48 MW IT et répartie comme suit :

- Bâtiment NORD: 6 data center de 6 MW IT, soit 36 MW IT.
- Bâtiment SUD : 2 data center de 6 MW IT, soit 12 MW IT.

TELEHOUSE

II. DESCRIPTION TECHNIQUE

II.1 Fonctionnement général du système de refroidissement

Chaque bâtiment data center possède une production frigorifique indépendante située en toiture terrasse sur un caillebottis (niveau R1) et constituée de 6 modules de production d'eau glacée comprenant :

- Un groupe-froid à condensation par air avec un circulateur embarqué.
- Un ballon de stockage d'eau glacée d'un volume de 7m³.
- Un circulateur à vitesse variable pour alimenter les unités de traitement d'air.

Chacun de ces modules est connecté à un réseau de distribution hydraulique aller à **20°C** et un réseau de distribution hydraulique retour à **32°C**.

Ce réseau achemine les frigories produites jusqu'aux batteries des unités de traitement d'air des Data Hall et des locaux techniques.

La grande partie de la puissance est livrée aux Data Hall, où l'air en face avant des serveurs est à une température de 24°C. Il se réchauffe avec l'activité IT jusqu'à une température maximum de **37°C**.

Une mineure partie est livrée aux locaux techniques, où l'air ambiant réchauffé par les process de production d'électricité peut atteindre une température comprise entre **30 et 40°C**.

II.2 Récupération de la chaleur fatale

Les fluides caloporteurs utilisés pour véhiculer la chaleur fatale sont l'air puis l'eau.

La plus maîtrisée des solutions consiste à récupérer ces calories sur le circuit hydraulique retour à 32°C, grâce à des échangeurs thermiques à plaques en acier inoxydable, à haute performance énergétique.

Dans ces échangeurs à plaques circulent 2 fluides (eau claire pour chacun) qui sont physiquement dissociés, et qui vont uniquement échanger des calories.

Les calories du fluide primaire (côté Data Center) vont ainsi être acheminer vers 2 applications :

- Le système de préchauffage des groupes électrogènes (usage interne, 360 kW)
- La centrale de valorisation située sous le bâtiment administratif (usage externe, 24 MW)

II.3 Valorisation de la chaleur fatale

II.3.1 Système de préchauffage des groupes électrogènes

II.3.1.1 Avant-propos

Le besoin principal de chaleur du campus est le préchauffage du fioul des groupes électrogènes.

II.3.1.2 Principe

Les groupes électrogènes fonctionnent avec un carburant (fioul) qui nécessite impérativement d'être à une certaine température pour permettre le démarrage du process de production d'électricité.

La solution de préchauffage traditionnelle sur ces systèmes est une résistance électrique. Le design prévoit d'utiliser la chaleur du data center pour remplacer les résistances des groupes, via une pompe à chaleur eau/eau permettant d'atteindre la température que nécessite le process.

En effet la température du circuit d'eau de récupération des calories du data center peut atteindre entre 30 et 32°C. Celle-ci n'est pas compatible avec le process dédié qui nécessite une entrée d'eau à 55°C.

L'énergie électrique allouée au fonctionnement de cette pompe à chaleur est 4 fois inférieure.

II.3.1.3 Aménagement

L'aménagement prévu pour cette valorisation est une sous-station hydraulique composée de :

- Echangeur à plaques
- Pompe à chaleur
- Filtration, panoplie de remplissage en eau, robinetteries diverses.
- Organes de régulation et d'électricité

Tous ces systèmes sont installés à proximité du process (groupes électrogènes) au niveau B1.

II.3.1.4 Mesures

Les systèmes sont prévus avec un comptage d'énergie calorifique et électrique en communication constante avec la gestion centralisée du campus. Ils vont permettre de mesurer l'efficacité.

II.3.2 <u>Centrale de valorisation du campus</u>

II.3.2.1 Avant-propos

Le gisement de chaleur du campus est très important. Pour optimiser sa valorisation et anticiper les besoins des tiers à proximité du campus, à ce jour non identifiés et en cours de recensement, le design prévoit l'ensemble des dispositions architecturales pour créer une centrale thermique évolutive.

II.3.2.2 Principe

La centrale de valorisation de la chaleur fatale a pour objectif de constituer une source d'énergie calorifique pour des besoins environnant le campus CEZANNE de TELEHOUSE.

La température du circuit d'eau de récupération des calories du data center peut atteindre entre 30 et 32°C. Afin de la rendre compatible avec des besoins tiers, il faut donc prévoir l'installation de plusieurs pompes à chaleur eau/eau.

L'énergie électrique allouée au fonctionnement de ces pompes à chaleur reste inférieure à tout système de chauffage électrique standard.

Il est prévu l'installation d'échangeurs thermiques de récupération de la chaleur fatale de puissance totale 24MW. Valorisée via les pompes à chaleur, cette puissance restituable peut atteindre une puissance jusqu'à 28 MW.

II.3.2.3 Aménagement

Les échangeurs à plaques qui permettent de capter les calories de la boucle à 32°C sont installés en toiture terrasse de chaque bâtiment data center.

Un réseau hydraulique concentre l'énergie collectée sur chaque bâtiment pour les acheminer à la centrale de valorisation située sous le bâtiment administratif.

Cette centrale de valorisation de la chaleur fatale du campus tient en un local qui contient :

- Les pompes à chaleur eau/eau qui réhaussent la température.
- Les circulateurs.
- Les sous-stations hydrauliques du côté primaire (récupération data center) et secondaire (restitution à des tiers)
- Les organes électriques et de régulation.

II.3.2.4 Restitution de frigories

Les pompes à chaleur ayant pour fonction de puiser les calories, elles retournent ensuite les frigories bénéficiant au data center et contribuant à la diminution du besoin d'énergie électrique nécessaire au fonctionnement des groupes-froid.

II.3.2.5 Mesure

Les systèmes sont prévus avec un comptage d'énergie calorifique et électrique en communication constante avec la gestion centralisée du campus.

CEZANNE

Avant-projet détaillé

TELEHOUSE

137 Bd Voltaire 75011 PARIS 01.56.06.40.30

APL DATA CENTER

106 avenue Marx Dormoy 92120 MONTROUGE 01.46.94.91.00

ATELIER Patrick RICHET

Bat. A2 Centre de vie Agora, Les paluds 13400 AUBAGNE 04.42.72.64.27

Allée de la broquette 13170 LES PENNES MIRABEAU

INGENIERIE 84

ADRESSE PROJET

BP 40217 – 40 Avenue de la 1^{ère} DB 84306 CAIVAILLON CEDEX

MasterGrid

1 rue Roland Moreno BP 27129 26958 VALENCE CEDEX 9

Nom du document

Photovoltaic notice

Notice photovoltaïque

PROJET	EMETTEUR	PHASE	ZONE	NIVEAU	LOT	TYPE	NUMERO	INDICE
CEZ	APL	APD	ZZ	ZZ	CFO	SPE	42001	01

TABLEAU DES REVISIONS

Version	Date	Sommaire des modifications	Réda	cteur	Vérifi	cateur	Appro	bateur
01	30/04/25	Première émission	НМО	V	DNA	V	DNA	V

SOMMAIRE

I.	GENERALITES	3
1.1	Objet du document	3
II.	ETUDES DE DIMENSIONNEMENT	4
II.1	Données d'entrée	4
III.	DESCRIPTION TECHNIQUE DES PV	12
III.1	1 Architecture électrique	12
III.2	2 Type de panneaux	13
III.3	3 Infrastructures Ombrière	15
III.4	Infrastructures toiture terrasse	16

I. GENERALITES

I.1 Objet du document

Dans le cadre du projet de construction du campus de centre de données, une attention particulière est portée au respect des exigences réglementaires en matière de performance énergétique et d'intégration des énergies renouvelables.

Conformément à l'article L111-18-1 du Code de l'urbanisme et aux obligations environnementales en vigueur, le projet prévoit l'installation de panneaux photovoltaïques couvrant au moins 30 % de la surface de toiture des bâtiments.

En complément de cette installation en toiture, des ombrières photovoltaïques seront également mises en place sur les zones de stationnement du campus.

Cette double approche permet non seulement de répondre aux obligations réglementaires, mais aussi d'optimiser la production d'énergie renouvelable sur l'ensemble du site, tout en apportant un confort d'usage aux usagers (ombrage, protection des véhicules).

La présente notice a pour objectif de détailler les caractéristiques techniques, l'implantation et la justification réglementaire de ces dispositifs photovoltaïques, en toiture comme en ombrières.

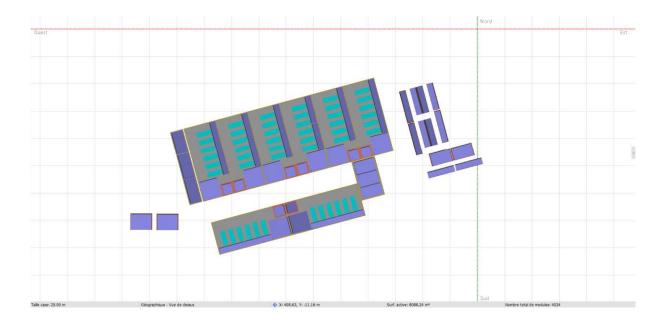
II. ETUDES DE DIMENSIONNEMENT

II.1 Données d'entrée

II.1.1 Présentation site

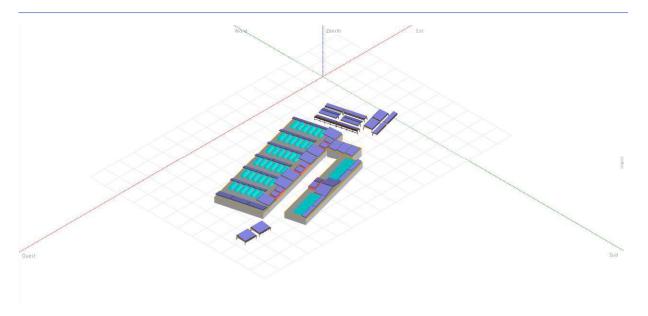
Le campus sera composé des bâtiments suivant:

- D'un bâtiment nord constitué de six centre de données de 6 MW IT répartis sur trois niveaux,
- D'un bâtiment sud constitué de deux centre de données de 6 MW IT répartis sur trois niveaux,
- D'un bâtiment de bureaux,
- D'une sous-station HTB,
- Deux postes de livraisons (poste bocage),
- De deux postes de gardes,
- De parkings,

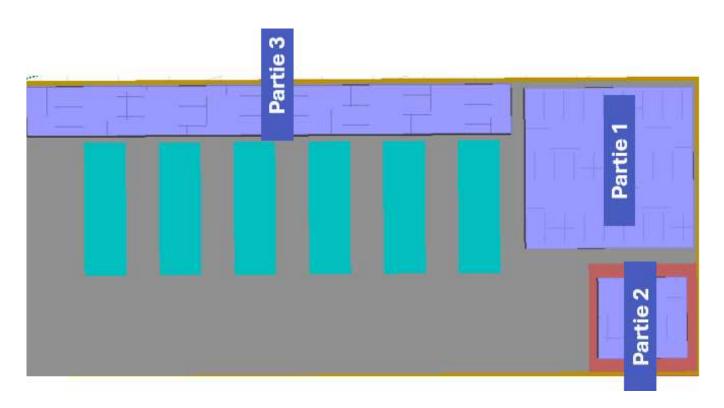

La surface totale des toitures terrasses des bâtiments à construire est calculé comme suit :

Type de bâtiment	Nombre de bâtiment	Surface unitaire toiture	Surface totale
Bâtiment nord	6 unités	1975 m²	11 850 m²
Bâtiment sud	2 unités	1975 m²	11 850 m²
Sous-station HTB	1 unité	796 m²	796 m²
Bâtiment office	1 unité	834 m²	834 m²
		Total	25 330 m²

La surface totale de PV à respecter est estimé à 7599 m².

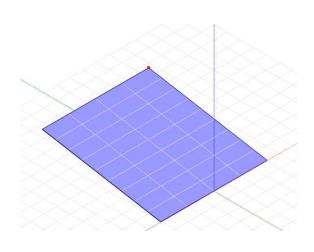

II.1.2 <u>Implantation projeté des panneaux photovoltaïque du campus</u>

La modélisation des PV est illustré ci-dessous :

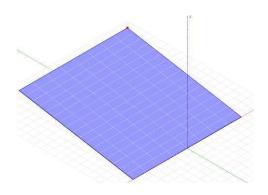


II.1.1 <u>Implantation projeté des panneaux photovoltaïque des bâtiments DC</u>

Les panneaux photovoltaïques situés sur chaque toiture terrasse des bâtiments datacenter (8 ensembles au total) sont répartis en 3 parties :

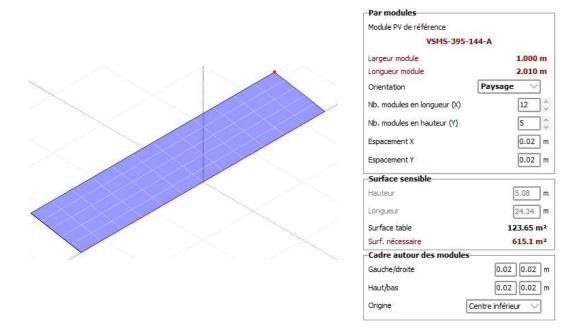


Vue de haut : toiture type d'un bloc datacenter



- Partie 1 : bloc PV de 74,2 m² (4x9 panneaux)

- Partie 2 : bloc PV de 280,93 m²(8 x 17 panneaux)

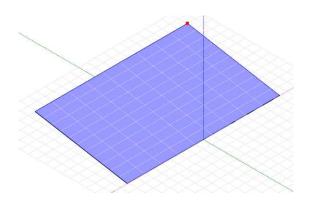


- Partie 3 : bloc PV de 123,65 m² (12 x 5 panneaux)

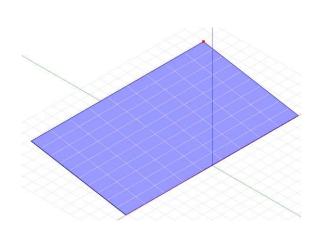
La quantité totale des panneaux photovoltaïque d'une toiture terrasse d'un bloc datacenter est estimé à 292 unités.

II.1.2 Implantation projeté des panneaux photovoltaïque du bâtiment de bureaux

Les panneaux photovoltaïques situés la toiture terrasse du bâtiment Office sont répartis comme suit :

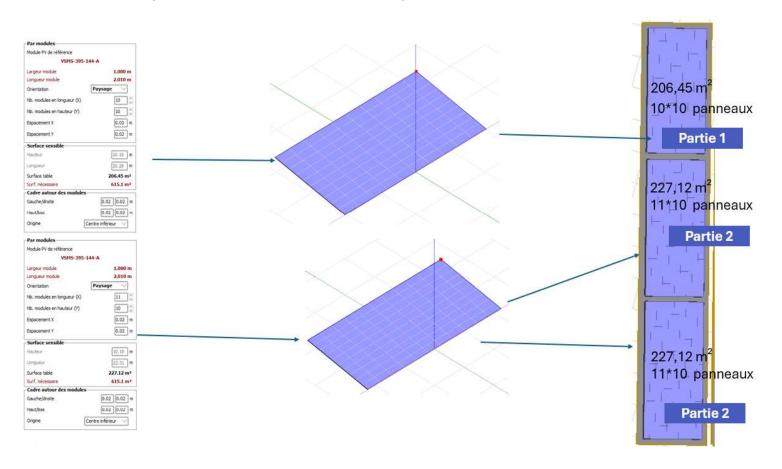


Vue de haut : Toiture office



- Partie 1 : Bloc de 204 m² (9 x 11 panneaux) :

- Partie 2 : Bloc de 185,9 m² (9 x 10 panneaux) :



La quantité totale des panneaux photovoltaïque d'une toiture terrasse du bâtiment de bureaux est estimé à 288 unités.

II.1.3 <u>Implantation de la sous-station électrique</u>

La quantité totale des panneaux photovoltaïque de la toiture terrasse du poste RTE est estimé à 320 unités.

II.1.4 Synthèse des installations PV en toiture terrasse

Type du bâtiment	Quantité	Surface d'implantation solaire par bâtiment	Surface totale d'implantation PV	Surface des bâtiments	Taux de remplissage
Bâtiment DC	8	602 m²	4816 m²	1975 * 8 = 15 800 m ²	30,5 %
Office	1	594 m²	594 m²	834 m²	75 %
Sous-station HTB	1	661 m²	661 m²	828 m²	80 %

II.1.5 <u>Implantation en ombrières parking à l'est</u>

La quantité totale des panneaux photovoltaïque en ombrière sur les parkings à l'est de la parcelles est estimé à 838 unités.

II.1.6 Implantation en ombrières parking à l'ouest

La quantité totale des panneaux photovoltaïque en ombrière sur les parkings à l'ouest de la parcelles est estimé à 252 unités.

II.1.7 Synthèses des installations PV en ombrières

Type du bâtiment	Quantité	Surface d'implantation solaire par bâtiment	Surface totale des parkings	Taux de remplissage
Parking Zone EST	8	1707,16 m²		
Parking Zone OUEST	1	520,5 m²	4491 m²	50%

II.1.8 Puissance crête délivrable

Site géographique	Situation		Paramètres du	projet
Cezanne	Latitude	43.41 °N	Albédo	0.20
France	Longitude	5.28 °E		
	Altitude	395 m		
	Fus. horaire	UTC		
Données météo				
Cezanne				
Meteonorm 8.1 (1996-2015), Sat=10	00 % - Synthétique			

		Resum	né du système —	
Système coup	olé <mark>au rés</mark> eau	Tables sur un	bâtiment	
Orientation pl	an capteurs	Ombrages pro	oches	Besoins de l'utilisateur
Plans fixes	4 orientations	Ombrages linéai	res : Lent (simul.)	Charge illimitée (réseau)
Inclin./azimuts	10 / -15 *			
	10 / -105 °			
	10 / 75 *			
	10/0 *			
Information sy	ystème			
Champ PV			Onduleurs	
Nb. de modules		4024 unités	Nombre d'unités	39.7 unités
Pnom total		1589 kWc	Pnom total	1495 kWac
			Rapport Pnom	1.063

Energie produite 2224678 kWh/an Productible 1400 kWh/kWc/an Indice perf. PR 83.60 %

III. DESCRIPTION TECHNIQUE DES PV

III.1 Architecture électrique

III.1.1 Préambule

L'ensemble de l'installation photovoltaïque, qu'elle soit située en toiture ou sur les ombrières de parking, est conçu pour fonctionner en **régime de revente totale de l'électricité produite**.

Ainsi, aucune énergie issue de cette production ne sera consommée directement par les bâtiments du campus.

La totalité de l'énergie produite par les panneaux photovoltaïques sera **injectée sur le réseau public de distribution** (réseau du concessionnaire type ENEDIS ou régie locale), conformément aux prescriptions techniques et contractuelles imposées par celui-ci.

Cette configuration implique les éléments suivants :

- Mise en place d'un point de livraison dédié (PDL) pour la production, distinct des PDL de consommation des bâtiments.
- Installation d'un **comptage de production certifié MID** (relevé par le gestionnaire de réseau pour la facturation de l'énergie injectée).
- Respect du **référentiel de raccordement au réseau en injection totale** : raccordement en basse tension ou haute tension selon la puissance totale installée, schéma unifilaire validé, conformité au guide UTE C15-712-1.
- Signature d'un **contrat d'achat** avec un acheteur d'électricité (EDF OA, régie locale, ou autre fournisseur agréé) selon les modalités réglementaires en vigueur (tarif d'achat ou appel d'offres selon la puissance).
- Aucune interconnexion ne sera réalisée entre l'installation photovoltaïque et les installations électriques internes du campus.

Ce choix de revente totale permet de valoriser la production d'énergie renouvelable à l'échelle du territoire, tout en simplifiant l'exploitation énergétique du site.

III.2 Type de panneaux

La présente clause concerne la fourniture, le transport, la manutention, la pose et le raccordement de panneaux photovoltaïques de type TARKA 126 VSMD, à cellules monocristallines, dans le cadre de l'installation de systèmes photovoltaïques en toiture terrasse et/ou en ombrières de parking.

<u>Caractéristiques techniques minimales requises :</u>

Le module TARKA 126 VSMD devra répondre aux spécifications suivantes (à ajuster selon la fiche fabricant actuelle) :

Technologie: Monocristallin, demi-cellules

Nombre de cellules : 126 (2x63 cellules)

Puissance nominale (STC): ~385 – 395 Wc

Rendement module: ≥ 20,5 %

Dimensions: Environ 2090 x 1135 x 35 mm

Poids: Environ 25 kg

Verre : Verre trempé haute transparence, anti-reflet

Cadre: Aluminium anodisé

Boîte de jonction : IP68, connecteurs MC4 ou compatibles

Tolérance de puissance : 0 / +5 W

Température de fonctionnement : -40°C à +85°C

Certification : IEC 61215 / IEC 61730 / CE / RoHS

Garantie produit : 12 à 15 ans

Garantie de performance linéaire : 25 ans minimum (> 84 % à 25 ans)

Conditions de mise en œuvre

Fixation : Les panneaux seront installés sur des structures certifiées (ex. : ADIWATT pour ombrières, SOPRASOLAR FIX EVO pour toitures), compatibles mécaniquement et électriquement avec le module.

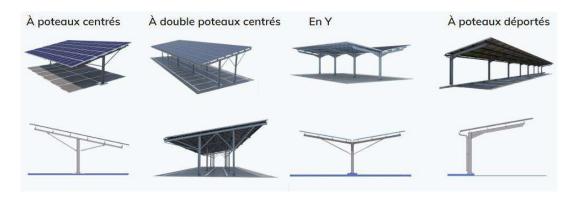
Inclinaison et orientation : Posés selon les préconisations du BET fluide ou solaire pour optimiser la production (orientation sud prioritaire ou est/ouest si requis).

Câblage : Pose des câbles DC entre modules et onduleurs selon le schéma unifilaire, avec respect des normes NFC 15-100 et UTE C15-712.

Accessoires : Fourniture et pose de connecteurs, protections DC, coffrets de jonction, et dispositifs de sécurité requis.

Conformité : L'installation devra respecter toutes les réglementations électriques, incendie, structurelles et environnementales en vigueur.

Essais et mise en service : L'entreprise devra réaliser les essais de continuité, d'isolement, de tension, et fournir le PV de mise en service avec relevé de production/

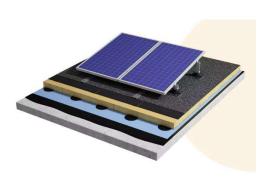


III.3 Infrastructures Ombrière

Le projet prévoit l'installation d'ombrières photovoltaïques sur les aires de stationnement du campus à l'aide de structures de type **ADIWATT**, reconnues pour leur robustesse, leur modularité et leur adaptabilité aux contraintes de site.

Caractéristiques générales de l'ombrière ADIWATT :

- **Structure** : Acier galvanisé à chaud ou aluminium selon modèle, offrant une excellente durabilité en extérieur.
- **Typologie** : Ombrières en **auvent mon pente ou bipente**, avec une pente optimisée pour la captation solaire (généralement entre 5 et 10°).
- **Modularité** : Système modulaire permettant l'adaptation au linéaire de stationnement, à la largeur des voies, et à la capacité d'accueil souhaitée.
- Intégration photovoltaïque : Fixations spécifiques conçues pour l'intégration directe des panneaux photovoltaïques sur la couverture de l'ombrière. Le système ADIWATT permet une ventilation arrière des panneaux favorisant leur rendement.
- **Gestion des eaux pluviales** : Intégration de chéneaux et descentes pour canaliser les eaux de pluie.
- **Hauteur utile** : Conçue pour permettre le stationnement de tout type de véhicule léger, avec dégagement suffisant pour les accès pompiers si requis.


III.4 Infrastructures toiture terrasse

Sur les toitures terrasses des bâtiments du campus, l'intégration des panneaux photovoltaïques sera réalisée à l'aide du système de fixation **SOPRASOLAR FIX EVO TILT**, développé par SOPREMA.

Ce procédé est spécifiquement conçu pour les toitures-terrasses inaccessibles, et permet une pose sans percement, respectant à la fois l'étanchéité et les contraintes structurelles du bâtiment.

Caractéristiques générales du système SOPRASOLAR FIX EVO TILT :

- **Type de support** : Fixations sur plots lestés compatibles avec les revêtements d'étanchéité bitumineux SOPREMA. Aucune pénétration de la membrane n'est nécessaire, garantissant la continuité de l'étanchéité.
- **Inclinaison** : Système TILT permettant une inclinaison des modules généralement de 10° à 15°, optimisée pour le gisement solaire local.
- **Orientation**: Installation en orientation sud (ou est/ouest selon contraintes) pour une production optimale.
- **Compatibilité** : Conçu pour accueillir tout type de panneaux photovoltaïques cadrés standards.
- **Ventilation**: Conception favorisant la ventilation naturelle des modules, contribuant à de meilleures performances énergétiques.
- **Résistance** : Conforme aux normes de résistance au vent et à la neige (zone géographique prise en compte dans le calcul de lestage).

Élément	Description
Procédé	SOPRASOLAR FIX EVO_TILT
Inclinaison des modules	10°
Avis Technique	ATec n° 21/20-71_V4 (support béton)
Support toiture	Dalle béton (conformité DTU 20.12)
Modules compatibles	VOLTEC Tarka 126 VSMD-xxx (visés dans l'Avis Technique)
Isolant thermique	EFIGREEN ALU+ (ép. min 60 mm en un lit / 100–240 mm en deux lits – SOPREMA)
Fixation isolant	COLTACK EVOLUTION, SOPRACOLLE 300 N ou fixations mécaniques (hors support type D)
Écran pare-vapeur	SOPRASTICK SI4 (auto-adhésif, semi-indépendant)
Étanchéité bicouche	ELASTOPHENE FLAM 25 AR T3 (soudé en plein)
Structure de pose PV	Système SOPRASOLAR FIX EVO_TILT (réhausses alu, bloqueurs, étriers)
Ambiance saline	Composants adaptés pour atmosphères salines
Classement feu toiture	PV Broof T3 – Rapport d'essai RA20-0141
Traçabilité chantier	Système commercialisé complet par SOPRASOLAR avec traçabilité jusqu'au chantier (recommandé par AQC)
Remarques calepinage	Restrictions de pose à signaler par l'étancheur à la MOE/MOA

